The goal is to understand the definition of a stable monoidal ∞ -category enough to understand the universal property of the derived category of abelian groups (or vector spaces for some field), and potentially prove the Eilinberg-Steenrod and de Rham theorems.

- 1. An ∞ -category is *pointed* if it admits an object which is both initial and final.
- 2. An ∞ -category is *stable* if it is pointed, finitely complete, finitely cocomplete, and the suspension functor is an equivalence.

Note that one needs the notion of limits to make these definitions.

- 1. A colimit of a diagram $p:K\to C$ is an initial object in the cocone category $C_{p/}$.
- 2. An object is initial if the canonical map $C_{/x} \to C$ is an acyclic fibration of simplicial sets.
- 3. Cocone categories $C_{/p}$ are defined via a universal property involving *joins*, an operation on simplicial sets.
- 1. A monoidal ∞ -category is a cocartesian fibration $p: M^{\otimes} \to N(\Delta^{op})$, such that the Segal maps are equivalences,

$$M_{[n]}^{\otimes} \to (M_{[1]}^{\otimes})^{\times n}, \qquad n \ge 0.$$

2. Let $p: C \to D$ be a functor between ∞ -categories. A morphism $f: c_1 \to c_2$ in C is cocartesian if the following map is an acyclic Kan fibration.

$$C_{f/} \to C_{c_1/} \times_{D_{p(c_1)/}} D_{p(f)/}.$$

3. A functor $p: C \to D$ between ∞ -categories is a cocartesian fibration if p is an inner fibration and for every object $c_1 \in C$ and every morphism $\alpha: p(c_1) = d_1 \to d_2$ in D admits a cocartesian lift.