INFINITY CATEGORIES SEMINAR

ROBERT CARDONA

0. INTRODUCTION

Our goal is to define limits and colimts in infinity categories. We will motivate these definitions
with the ordinary categorical definitions.

Definition 0.1. The oo-category Top of topological spaces is the following simplicial set: an
n-simplex is:

(1) A tuple (Xo,...,X,) of n+ 1 topological spaces.

(2) A family of morphisms

LY Jj—i—1 .
(hig : Xi x Oioy™ = Xj)ocicjcn

where 05 i= {(t1, ..., t) € R™ 0 <t <1}
(3) The morphisms h; ; are required to satisfy the compatibility condition: for every 0 < i <
J < k < n, we should have

hig(z, (51, 851, Lite, oo temjo1)) = Ry (hig (@, (s1, -5 8j—i1)), (b1, -y te—je1))
The face morphisms are

dk : (Xo, .. ,Xn,hiyj) —> (Xo, Ce. an—lka-i-l, e ,Xn,h;’j)

where
hi7j(ﬂf,t) ifi<j<k
i j(x,y) = hijra (@, (b, thim1, 0ty oo tj—im1)) i<k <j
hiv1+1(z,t) ifk<i<j

The degeneracy morphisms are

Sk - (X(), coy Xny hi,j) — (X(), ey Xy Xy o oo, X, h;7j)

where
h@j(l’,f) ifi<j<k
i (@, t) = S hij—1(z, (b1, it thmigts - - tj—im1)) i<k <j
hi_ljj_l(w,t) ifk<i< J

where we interpret h;; as idy;.

Note that every sequence of continuous maps Xg f—1> Xy — - f—n> X, defines an n-simplex:
choose h; ; to be the composition X; x D{;j_l — X; ﬂ Xiy1 — -+ f—]> X;.

Definition 0.2. A morphism p : K — C of simplicial sets is a weak equivalence if the geometric
realization is a homotopy equivalence.
1



2 ROBERT CARDONA

Definition 0.3. Let C be a category and let p : A — B and ¢ : X — Y be morphisms in C. We
say that p has the left lifting property with respect to ¢, and ¢ has the right lifting property with
respect to p, if given any diagram

A— X

A
pJ 7 lq
Ve

B—Y

there exists a dotted arrow as indicated, rendering the diagram commutative.

Definition 0.4. A morphism p : K — C of simplicial sets is a Kan fibration if it has the right
lifting property with respect to every horn inclusion A}' C A™.

Definition 0.5. If C is an ordinary category, we define C°? by: the objects of C°P are the same as
C, and for z,y € obj(C), we define homeor (x,y) := home(y, ).

Definition 0.6. The opposite of a simplicial set S as follows: we set S;P = S, but the face and
degeneracy maps on S°P are given by the formulas

(di : Sgp — Sffil) = (dn—i : Sn — Sn—l)

(si: 5P — Sfﬂl) = (Sp—i: Sp = Sn+1)-
Proposition 0.7. A simplicial set S is an oco-category if and only if its opposite category S°P is a
oo-category.

Proof. Omitted. See Lurie, HT'T, p. 26. O

1. JOIN AND SPLICE 0co-CATEGORIES

Definition 1.1. Let C and C’ be ordinary categories. We will define a new category C x C’, called
the join of C and C’. An object of C x C’ is either an object of C or an object of C’. The morphism
sets are given as follows:

home(z,y) ifx,yeC

home: (z,y) if x,y €C’

0 ifrel,yecC

* ifreC,yec.

home,c/ (2, y) ==

Definition 1.2. If S and S’ are simplicial sets, then the simplicial set S * S, called the join is
defined by

(S =8, 08,0 ) Sixs]
i+j=n—1

Proposition 1.3. The nerve is compatible with the join constructions in that there is a natural
isomorphism N(A) « N(B) — N(Ax B), A, B € Cat.

Proof. Omitted. O
Proposition 1.4. If S and S’ are co-categories, then S x S’ is an oco-category.
Proof. Omitted. O

Notation 1.5. Let K be a simplicial set. The left cone, or cone K is defined to be the join
Ax K. Dually, the right cone, or co-cone K” is defined to be the join K * AY. Either cone contains
a distinguished vertex (belonging to AO), which we will refer to as the cone point.

Proposition 1.6. (1) For the standard simplices we find A? x AJ = A‘i+j+1 for 4,5 > 0, and
these isomorphisms are compatible with the obvious inclusions of A* and A7.
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(2) (DA™ )T = A7,
(3) (9A™ 1) = A7.

Definition 1.7. If ' : C — £ and G : D — & are functors, then their comma category is the
category (F' | G) whose
e objects are triples (¢, «,d) where ¢ € obj(C), d € obj(D), and o : F(c) — G(d) is a
morphism in £, and whose
e morphisms from (c,a,d) to (¢, o’,d") are pairs (3,7v), where 8 :¢c— ¢ and v:d — d are
morphisms in C and D, respectively, such that the following diagram commutes:

—
G(v)

Definition 1.8. A special case of a comma category is the over category C,,, of a category C over
an object x € obj(C), where C/, := (F | G), where F': C — C is the identity functor and G : 1 — C
is defined by * — x (where 1 is category with one object and one morphism). To explicitly describe
this, we have that

e objects are morphisms a € C such that cod(a) = z, that is, morphisms in C of the form
a:y — x, and whose

e morphisms are 3 :y — 3 in C from o : y — x to o : ¢y — x such that the following
diagram commutes:

<

We often write for simplicity

This is sometimes called the slice category. Note that Groth reserves that term for the category of
cones over a particular functor.

Definition 1.9. Another special case of the comma category is the under category C,, of a category
C under an object x € obj(C), where C,, := (F' | G), where F' : 1 — C is defined by * — z, and
G : C — C is the identity functor. To explicitly describe this, we have that

e objects are morphisms « € C such that dom(a) = x, that is, morphisms in C of the form
a:x — y, and whose
e morphisms are 3 : y — 3 in C from o : * — y to & : * — 3 such that the following

diagram commutes:
\a\/
—
B

[0}

/

Y

LR
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X
Coy = C{\a\
Y

This is often called the coslice category.

We often write for simplicity

Definition 1.10. If F': J — C is a diagram, that is, a functor, then we define a cone of F' to be
a natural transformation A(b) — F, where b € C and A : C — €7 the functor with b+ A(b), with
A(b) : J — C, the constant functor at b, that is z — b for all x € J. In other words, a cone of F
is a family of morphisms (7, : A(b)(z) = b — F()) such that the following diagram commutes for

all f:2z —yin J:
b
TJ{\

F(f)

F(y)

Definition 1.11. If F' : J — C is a diagram, then we define a co-cone of F' to be a natural
transformation ' — A(b) for some b € C. Equivalently, a co-cone is a family of morphisms
(02 : F(z) — A(b)(x) = b) such that the following diagram commutes for all f : z — y in J:

F@) "0 F(y
DN |

Definition 1.12. Let p : J — C be a functor. We define the category of cones over p to be the
comma category (A | p). This is a slight abuse of notation: we have A : C — ¢’/ butp:J—C,
where for the comma category to make sense, both functors must have the same codomain. In this
case, we consider p as the functor 1 — C7 defined by % — p.

e The objects of this category are cones over p as defined above: natural transformations
7 : A(b) — p for some b € C.

e The morphisms of this category are morphisms « : b — ¢ in C between 7 : A(b) — p and
7' : A(e) — p, that is, such that the following diagrams commute for all z € J:

h—2

N

p(x)

We denote this category by C/, and also call is the over category over p. Note that we recover the
previous definition of over category by choosing p appropriately.

Definition 1.13. Let p : J — C be a functor. We define the category of co-cones under p to be
the comma category (p | A), where we have the same abuse of notation as before.

e The objects of this category are co-cones under p as defined above: natural transformations
o :p— A(b) for some b € obj(C).
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e The morphisms of this category are morphisms a : b — ¢ in C between o : p — A(b) and
o' :p— A(c), that is, such that the following diagrams commute for all z € J:

p(x)
b T> C

We denote this category by C,, and also call it the under category of p. Again, we can recover the
definition of under category by a particular choice of p.

Proposition 1.14. Let p : L — C be a map of simplicial sets with C an oo-category. There is an
oo-category C/, characterized by the following universal property: For every simplicial set K, there
is a natural bijection

homgget (K, C/p) = homssetL/(L — K L,L —C) = homy(K * L,C)

where
L
hom, (K « L,C) = J ¢
K+«L——C

The oo-category C, is the oo-category of cones on p.
The Yoneda lemma gives us a description of the n-simplices of C,, as

(C/p)n = homy(A™ % L,C).

Proposition 1.15. Let p : L — C be a map of simplial sets with C an co-category. There is an
oo-category C,,/ characterized by the following universal property: For every simplicial set K, there
is a natural bijection

homgset (K, Cp/) = homsget, , (L—L*K,L—C)=hom,,(L=xK,C)

where
L
hom, (L x K,C) = J ¢
L+xK—C

The oo-category C,, is called the co-category of co-cones on p.

Remark 1.16. We often consider the special case: let C be an oo-category and let x € C be an
object, classified by the map , : A° — C. Then the oo-category C/x, 1s called the oo-category of
objects over x, and is simply denoted C/,. Dually, the co-category C,, , is called the co-category of
objects under z, and is denoted by C, .

Proposition 1.17. If p : A — B is a functor, then there is a natural isomorphism of simplicial
sets

N(B/p) = N(B)/n@p)-
2. INITIAL AND TERMINAL OBJECTS

Definition 2.1. A morphism p : X — S of simplicial sets which has the right lifting property with
respect to every inclusion A™ C A" is called a trivial fibration or acyclic fibration.

Proposition 2.2. A morphism of simplicia sets is a Kan fibration and a weak equivalence if and
only if it is a trivial fibration.
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Definition 2.3. Let C be a simplicial set. A vertex z of C is final if the projection C/,, — C is a
trivial fibration of simplicial sets.
The projection is defined on the n-cells as follows: we view (C/;)n — Cp as
hom, (A" * AY,C) = homgget (A",C/;) — homgget (A", C).

by the adjunction between slice and join and by the Yoneda lemma, where p : AY — C defined by
p(0) = z (again, we get this from the correspondence of the Yoneda lemma: z € C, «> p: A” = C
with p(0) = z). Notice that

hom, (A" * A, C) = {o: A" = C:o(n+1) =2}
Hence, we define our map (C;,)n — Cp by ((o : A" 5 C)io(n+1) =) = o|p00

Definition 2.4. Given a simplicial set S and two vertices x,y € S, we define a new simplicial set
homg(x, y), the space of right morphisms from x to y, by letting homgget (A", homg(aﬁ, y)) denote

,,,,,

vertex x.

This simplicial set can also be interpreted as the pullback of the following diagram
Sty
AV—— S
where A — S corresponds to the vertex .

Proposition 2.5. The following are equivalent for an object x of an co-category C:

(1) The object z is final.
(2) The mapping spaces mapg(:z' ,x) are contractible for all 2’ € C.

(3) Every simplicial sphere ae : 9A™ — C such that «(n) = x can be filled to an entire n-simplex
A" = C.

Definition 2.6. Let C be a simplicial set. A vertex z of C is initial if the projection C,, — C is a
trivial fibration.

This time the projection, defined on n-cells (Cy/)n — Cp, is defined by o + 0|5 1.2,....n41}, Using
the same reasoning as before.

Definition 2.7. Given a simplicial set .S and two vertices x,y € S, we define a new simplicial set
homg (z,y), the space of left morphisms from x to y, by letting homgget (A”, homg(x, y)) denote the

,,,,,

This simplicial set can also be interpreted as the pullback of the following diagram

Sy/

AV—— 8
where A — S corresponds to z.

Proposition 2.8. The following are equivalent for an object x of an oo-category C:
(1) The object x is initial.
(2) The mapping spaces mapZ(z,z’) are contractible for all 2’ € C.
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(3) Every simplicial sphere a : 0A™ — C such that a(0) = x can be filled to an entire n-simplex.

Proposition 2.9. An oco-category of a poset (P, <) has a final (initial) object if and only if the
poset has a maximal (minimal) object.

Proof. Suppose x is a final object in the oco-category N(P,<), then x is an element of P and
N(P)/, — N(P) is a trivial fibration, that is, for every n, we have the right lifting property with
respect to the inclusion 0A™ — A™:

DA™ —— N(P),

2
7
~ can
é J’
-

A" N(P)

Notice that, by Proposition N(P);z = N(P);). Let y € P be any element. By the Yoneda

lemma, this corresponds to a map between simplicial sets A° — N(P). Consider the above com-
mutative square with n = 0. We immediatly have that OA? = (), so the lifting property reduces
to:

A N(P)

But the lifting property here tells us that y — z is an object in P,, that is y < z. Since y € P
was arbitrary, conclude that x is a maximal element of p.

Conversely, suppose = € (P, <) is a maximal element. Then, we immediately have that P/, = P
which means N(P),, = N(P). Now the lifting property is trivial for all n:

aA”%N

Lk

An N

14

Conclude by definition that € N(P) is final. O

This is a special case of the slightly more general result:

Proposition 2.10. An oo-category N(C) of a category C has a final (initial) object if and only if
the category has a final (initial) object.

Proof. Suppose x is a final object in the oo-category N(C), then x is an object in C and N(C) /, —
N(C) is a trivial fibration, that is, for every n, we have the right lifting property with respect to
the inclusion 9A™ — A™:

OA" —— N(C)/m
"]
A" N(e)

Notice that, by Proposition N(C)j» = N(C/p). Let y € obj(C) be any object. By the
Yoneda lemma, this corresponds to a map between simplicial sets A — N(C). Consider the above
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commutative square with n = 0. Since A? = @, this reduces to:

2
7
Ve can
e

AL N(e)

But the lifting property here tells us that y — x is an element of C/,, that is home(y, z) # (), and
in particular, | home(y, z)| > 1.
Let f,g:y — = be two morphisms in C. Consider the lifting property for n = 1:

| ]

Al —— N(C)

where OA! takes (0,1) — (f,g) and A' — N(C) represents the morphism id, : y — y in C. This
diagram clearly commutes (although, it might take a second to see what the top right corner does).
Hence the lifting exists. The top triangle commuting tells us that there is a map a:y =y in C/,
and the bottom triangle tells us that o = id,. Thus, conclude that |home(y,x)| = 1 and so z is a
final element in C since y was arbitrary.

Conversely, suppose that x € obj(C) is a final object: |home(y,z)| = 1 for all y € obj(C). We
immediately have that C,, = C which means N(C),, = N(C). Now the lifting property is trivial
for all n:

OA™ —— N(C)

2
4 ~
- =
-
Ve

A" — N(C)
Conclude by definition that z € N(C) is final. O

~

T

Proposition 2.11. The one-point topological space is a final object in the co-category of topolog-
ical spaces.

Proposition 2.12. A topological space homotopy equivalent to a one point space is a final object
in the oco-category of topological spaces.
3. LimiTs AND COLIMITS

Definition 3.1. Let F' : J — C be a functor of ordinary categories. The limit of F' is a cone
7 : A(c) — F for some ¢ € obj(C) such that for any other cone o : A(b) — F there exists a unique
« : b — ¢ such that the following diagram commutes for every f :x — y in J:

F(x) TF(?J)

We can interpret as: limits are final objects in the category of cones on F.
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Definition 3.2. Let F': J — C be a functor of ordinary categories. The colimit of F' is a co-cone
T : F — A(b) for some b € obj(C) such that for any other co-cone o : F' — A(c). there exists a
unique map B : b — ¢ such that the following diagram commutes for all f : x — y in J.

2(f)

F(z) ] - F(y)
Ogx | (J'y
| 8
4

We can interpret this as: colimits are initial objects in the category of co-cones on F'.

Using these definitions as motiviation we are now ready to define limits and colimits for oo-
categories.

Definition 3.3. Let C be an oco-category and let p : K — C be an arbitrary map of simplicial sets.
A colimit for p is an initial object of C),/, the co-category of co-cones on p. A limit for p is a final
object of C/,, the oo-category of cones on p.

Remark 3.4. A colimit of a diagram p : K — C is an object of C,,. By the Yoneda lemma, we
know that
(Cp/)o = homgget (A, C,) = homy, (K x AY,C)

and using our previous notation, this can be interpreted as an extension of p, p: K* — C.

Notation 3.5. If p: K — C is a diagram, we can write hﬂ(p) to denote a colimit of p and Lgn(p)
to denote a limit of p.

Proposition 3.6. A vertex is final (initial) if and only if it is a limit (colimit) of the empty diagram.
Proof. Notice that if p: ) — C is the empty diagram, then

(C/p)n = hom, (A" % (), C) = homgget(A",C) = C,,
which means €/, = C. Now simply note that z is final in C if and only if z is final in C/, if and only
if x is a limit of p. ([l
Propc))sition 3.7. Limits (colimits) in O-categories (that is, nerves of posets) are infimums (supre-
mums).

Proof. If r : Q — P is a map of posets, then a limit of r is a final object in N(P),,. = N(P),) which
we know must be a final object in P, but a final object in P, is just the infimum of the objects
involved, that is, a infimum of a sub-poset of P. O

Definition 3.8. Let C be an co-category and let ¢ : 0 — C be a square. We define 0 = Al « Al =
(AD)” = (A3)".

(1) The square q is a pushout if q : (A3)” — C is a colimiting cocone, that is, a colimit.

(2) The square q is a pullback if q : (A3)? — C is a limiting cone, that is, a limit.

Definition 3.9. The homotopy pushout of a diagram
x 2.y
/|
Z

of topological spaces is defined as (Y LI ([0,1] x X) U Z) modulo the relations f(X) ~ {0} x X and
g(X) ~ {1} x X.
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Proposition 3.10. The homotopy pushout gives a pushout square in the co-category of topological
spaces.

Example 3.11. Observe that the regular topological pushouts of

St——— {pt} and S! e, p2

N
{pt} D*

are {pt} and S? respectively. Taking the homotopy pushout results in both having the same
pushout: S?, making pushout behave well with respect to homotopy.

Definition 3.12. The homotopy pullback of a diagram
Y
|s
A T> X
of topological spaces is defined as
{(z,7,9) € Z x top([0,1], X) x X :7(0) = f(2), 7(1) = g(y)}

Proposition 3.13. The homotopy pullback gives a pullback square in the co-category of topological
spaces.
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