INFINITY CATEGORIES SEMINAR

ROBERT CARDONA

0. Introduction

Our goal is to define limits and colimts in infinity categories. We will motivate these definitions with the ordinary categorical definitions.

Definition 0.1. The ∞-category **Top** of topological spaces is the following simplicial set: an n-simplex is:

- (1) A tuple (X_0, \ldots, X_n) of n+1 topological spaces.
- (2) A family of morphisms

$$(h_{i,j}: X_i \times \square_{\text{top}}^{j-i-1} \to X_j)_{0 \le i < j \le n}$$

where $\Box_{\text{top}}^m := \{(t_1, \dots, t_m) \in \mathbb{R}^m : 0 \leq t_i \leq 1\}.$ (3) The morphisms $h_{i,j}$ are required to satisfy the compatibility condition: for every $0 \leq i < 1$ $j < k \le n$, we should have

$$h_{i,k}(x,(s_1,\ldots,s_{j-i-1},1,t_1,\ldots,t_{k-j-1})) = h_{j,k}(h_{i,j}(x,(s_1,\ldots,s_{j-i-1})),(t_1,\ldots,t_{k-j-1}))$$

The face morphisms are

$$d_k: (X_0, \dots, X_n, h_{i,j}) \mapsto (X_0, \dots, X_{k-1}, X_{k+1}, \dots, X_n, h'_{i,j})$$

where

$$h'_{i,j}(x,y) := \begin{cases} h_{i,j}(x,t) & \text{if } i < j < k \\ h_{i,j+1}(x,(t_1,\ldots,t_{k-i-1},0,t_{k-i},\ldots,t_{j-i-1})) & \text{if } i < k \le j \\ h_{i+1,j+1}(x,t) & \text{if } k \le i < j \end{cases}$$

The degeneracy morphisms are

$$s_k: (X_0, \dots, X_n, h_{i,j}) \mapsto (X_0, \dots, X_k, X_k, \dots, X_n, h'_{i,j})$$

where

$$h'_{i,j}(x,t) := \begin{cases} h_{i,j}(x,t) & \text{if } i < j \le k \\ h_{i,j-1}(x,(t_1,\ldots,t_{k-i-1},t_{k-i+1},\ldots,t_{j-i-1})) & \text{if } i \le k < j \\ h_{i-1,j-1}(x,t) & \text{if } k < i < j \end{cases}$$

where we interpret $h_{i,i}$ as id_{X_i} .

Note that every sequence of continuous maps $X_0 \xrightarrow{f_1} X_1 \to \cdots \xrightarrow{f_n} X_n$ defines an *n*-simplex: choose $h_{i,j}$ to be the composition $X_i \times \Box_{\text{top}}^{j-i-1} \to X_i \xrightarrow{f_{i+1}} X_{i+1} \to \cdots \xrightarrow{f_j} X_j$.

Definition 0.2. A morphism $p: K \to \mathcal{C}$ of simplicial sets is a weak equivalence if the geometric realization is a homotopy equivalence.

Definition 0.3. Let \mathcal{C} be a category and let $p:A\to B$ and $q:X\to Y$ be morphisms in \mathcal{C} . We say that p has the *left lifting property* with respect to q, and q has the right lifting property with respect to p, if given any diagram

$$\begin{array}{ccc}
A \longrightarrow X \\
\downarrow p & \downarrow & \downarrow q \\
B \longrightarrow Y
\end{array}$$

there exists a dotted arrow as indicated, rendering the diagram commutative.

Definition 0.4. A morphism $p: K \to \mathcal{C}$ of simplicial sets is a *Kan fibration* if it has the right lifting property with respect to every horn inclusion $\Lambda_i^n \subseteq \Delta^n$.

Definition 0.5. If \mathcal{C} is an ordinary category, we define \mathcal{C}^{op} by: the objects of \mathcal{C}^{op} are the same as \mathcal{C} , and for $x, y \in \text{obj}(\mathcal{C})$, we define $\text{hom}_{\mathcal{C}^{\text{op}}}(x, y) := \text{hom}_{\mathcal{C}}(y, x)$.

Definition 0.6. The *opposite of a simplicial set* S as follows: we set $S_n^{\text{op}} = S_n$, but the face and degeneracy maps on S^{op} are given by the formulas

$$(d_i: S_n^{\text{op}} \to S_{n-1}^{\text{op}}) = (d_{n-i}: S_n \to S_{n-1})$$

 $(s_i: S_n^{\text{op}} \to S_{n+1}^{\text{op}}) = (s_{n-i}: S_n \to S_{n+1}).$

Proposition 0.7. A simplicial set S is an ∞ -category if and only if its opposite category S^{op} is a ∞ -category.

1. Join and Splice ∞-Categories

Definition 1.1. Let \mathcal{C} and \mathcal{C}' be ordinary categories. We will define a new category $\mathcal{C} * \mathcal{C}'$, called the *join* of \mathcal{C} and \mathcal{C}' . An object of $\mathcal{C} * \mathcal{C}'$ is either an object of \mathcal{C} or an object of \mathcal{C}' . The morphism sets are given as follows:

$$\hom_{\mathcal{C}*\mathcal{C}'}(x,y) := \begin{cases} \hom_{\mathcal{C}}(x,y) & \text{if } x,y \in \mathcal{C} \\ \hom_{\mathcal{C}'}(x,y) & \text{if } x,y \in \mathcal{C}' \\ \emptyset & \text{if } x \in \mathcal{C}', y \in \mathcal{C} \\ * & \text{if } x \in \mathcal{C}, y \in \mathcal{C}'. \end{cases}$$

Definition 1.2. If S and S' are simplicial sets, then the simplicial set S * S', called the *join* is defined by

$$(S*S')_n := S_n \cup S'_n \cup \bigcup_{i+j=n-1} S_i \times S'_j.$$

Proposition 1.3. The nerve is compatible with the join constructions in that there is a natural isomorphism $N(A) * N(B) \to N(A * B)$, $A, B \in \mathbf{Cat}$.

Proof. Omitted.
$$\Box$$

Proposition 1.4. If S and S' are ∞ -categories, then S * S' is an ∞ -category.

Proof. Omitted.
$$\Box$$

Notation 1.5. Let K be a simplicial set. The *left cone*, or *cone* K^{\triangleleft} is defined to be the join $\Delta^0 * K$. Dually, the *right cone*, or *co-cone* K^{\triangleright} is defined to be the join $K * \Delta^0$. Either cone contains a distinguished vertex (belonging to Δ^0), which we will refer to as the *cone point*.

Proposition 1.6. (1) For the standard simplices we find $\Delta^i * \Delta^j \cong \Delta^{i+j+1}$ for $i, j \geq 0$, and these isomorphisms are compatible with the obvious inclusions of Δ^i and Δ^j .

- $(2) (\partial \Delta^{n-1})^{\triangleleft} \cong \Lambda_0^n.$ $(3) (\partial \Delta^{n-1})^{\triangleright} \cong \Lambda_n^n.$

Definition 1.7. If $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ are functors, then their comma category is the category $(F \downarrow G)$ whose

- objects are triples (c, α, d) where $c \in \text{obj}(\mathcal{C}), d \in \text{obj}(\mathcal{D}), \text{ and } \alpha : F(c) \to G(d)$ is a morphism in \mathcal{E} , and whose
- morphisms from (c, α, d) to (c', α', d') are pairs (β, γ) , where $\beta : c \to c'$ and $\gamma : d \to d'$ are morphisms in \mathcal{C} and \mathcal{D} , respectively, such that the following diagram commutes:

$$F(c) \xrightarrow{F(\beta)} F(c')$$

$$\alpha \downarrow \qquad \qquad \downarrow \alpha'$$

$$G(d) \xrightarrow{G(\gamma)} G(d')$$

Definition 1.8. A special case of a comma category is the over category $\mathcal{C}_{/x}$ of a category \mathcal{C} over an object $x \in \text{obj}(\mathcal{C})$, where $\mathcal{C}_{/x} := (F \downarrow G)$, where $F : \mathcal{C} \to \mathcal{C}$ is the identity functor and $G : \mathbf{1} \to \mathcal{C}$ is defined by $*\mapsto x$ (where 1 is category with one object and one morphism). To explicitly describe this, we have that

- objects are morphisms $\alpha \in \mathcal{C}$ such that $\operatorname{cod}(\alpha) = x$, that is, morphisms in \mathcal{C} of the form $\alpha: y \to x$, and whose
- morphisms are $\beta: y \to y'$ in \mathcal{C} from $\alpha: y \to x$ to $\alpha': y' \to x$ such that the following diagram commutes:

$$y \xrightarrow{\beta} y'$$

$$\downarrow^{\alpha'}$$

$$x$$

We often write for simplicity

$$\mathcal{C}_{/x} = \left\{ \begin{array}{c} y \xrightarrow{\beta} y \\ \downarrow \alpha & \downarrow \alpha' \\ x \end{array} \right\}$$

This is sometimes called the *slice category*. Note that Groth reserves that term for the category of cones over a particular functor.

Definition 1.9. Another special case of the comma category is the under category $\mathcal{C}_{x/}$ of a category \mathcal{C} under an object $x \in \text{obj}(\mathcal{C})$, where $\mathcal{C}_{x/} := (F \downarrow G)$, where $F : \mathbf{1} \to \mathcal{C}$ is defined by $* \mapsto x$, and $G: \mathcal{C} \to \mathcal{C}$ is the identity functor. To explicitly describe this, we have that

- objects are morphisms $\alpha \in \mathcal{C}$ such that $dom(\alpha) = x$, that is, morphisms in \mathcal{C} of the form $\alpha: x \to y$, and whose
- morphisms are $\beta: y \to y'$ in \mathcal{C} from $\alpha: x \to y$ to $\alpha': x \to y'$ such that the following diagram commutes:

We often write for simplicity

$$\mathcal{C}_{x/} := \left\{egin{array}{c} x & & & & \\ lpha & & lpha' & & \\ y & & & eta & y' \end{array}
ight\}$$

This is often called the *coslice category*.

Definition 1.10. If $F: J \to \mathcal{C}$ is a diagram, that is, a functor, then we define a *cone* of F to be a natural transformation $\Delta(b) \to F$, where $b \in \mathcal{C}$ and $\Delta: \mathcal{C} \to \mathcal{C}^J$ the functor with $b \mapsto \Delta(b)$, with $\Delta(b): J \to \mathcal{C}$, the constant functor at b, that is $x \mapsto b$ for all $x \in J$. In other words, a cone of F is a family of morphisms $(\tau_x : \Delta(b)(x) = b \to F(x))$ such that the following diagram commutes for all $f: x \to y$ in J:

$$\begin{array}{c}
b \\
\tau_x \downarrow \\
F(x) \xrightarrow{\tau_y} F(y)
\end{array}$$

Definition 1.11. If $F: J \to C$ is a diagram, then we define a *co-cone* of F to be a natural transformation $F \to \Delta(b)$ for some $b \in C$. Equivalently, a co-cone is a family of morphisms $(\sigma_x : F(x) \to \Delta(b)(x) = b)$ such that the following diagram commutes for all $f: x \to y$ in J:

$$F(x) \xrightarrow{F(f)} F(y)$$

$$\downarrow^{\sigma_y}$$

$$\downarrow^{\sigma_y}$$

Definition 1.12. Let $p: J \to \mathcal{C}$ be a functor. We define the category of cones over p to be the comma category $(\Delta \downarrow p)$. This is a slight abuse of notation: we have $\Delta: \mathcal{C} \to \mathcal{C}^J$, but $p: J \to \mathcal{C}$, where for the comma category to make sense, both functors must have the same codomain. In this case, we consider p as the functor $\mathbf{1} \to \mathcal{C}^J$ defined by $* \mapsto p$.

- The **objects** of this category are cones over p as defined above: natural transformations $\tau: \Delta(b) \to p$ for some $b \in \mathcal{C}$.
- The **morphisms** of this category are morphisms $\alpha: b \to c$ in \mathcal{C} between $\tau: \Delta(b) \to p$ and $\tau': \Delta(c) \to p$, that is, such that the following diagrams commute for all $x \in J$:

$$b \xrightarrow{\alpha} c \downarrow \tau_x \downarrow \tau_x' \\ p(x)$$

We denote this category by $C_{/p}$ and also call is the over category over p. Note that we recover the previous definition of over category by choosing p appropriately.

Definition 1.13. Let $p: J \to \mathcal{C}$ be a functor. We define the category of co-cones under p to be the comma category $(p \downarrow \Delta)$, where we have the same abuse of notation as before.

• The **objects** of this category are co-cones under p as defined above: natural transformations $\sigma: p \to \Delta(b)$ for some $b \in \text{obj}(\mathcal{C})$.

• The **morphisms** of this category are morphisms $\alpha: b \to c$ in \mathcal{C} between $\sigma: p \to \Delta(b)$ and $\sigma': p \to \Delta(c)$, that is, such that the following diagrams commute for all $x \in J$:

$$\begin{array}{c|c}
p(x) \\
\sigma_x \downarrow & \sigma'_x \\
b & \xrightarrow{\alpha} c
\end{array}$$

We denote this category by $C_{p/}$ and also call it the under category of p. Again, we can recover the definition of under category by a particular choice of p.

Proposition 1.14. Let $p: L \to \mathcal{C}$ be a map of simplicial sets with \mathcal{C} an ∞ -category. There is an ∞ -category $\mathcal{C}_{/p}$ characterized by the following universal property: For every simplicial set K, there is a natural bijection

$$\hom_{\mathbf{sSet}}(K, \mathcal{C}_{/p}) \cong \hom_{\mathbf{sSet}_{L/}}(L \to K * L, L \to \mathcal{C}) \cong \hom_p(K * L, \mathcal{C})$$

where

$$\hom_p(K * L, \mathcal{C}) \cong \left\{ \begin{array}{c} L \\ \downarrow \\ K * L \longrightarrow \mathcal{C} \end{array} \right\}.$$

The ∞ -category $\mathcal{C}_{/p}$ is the ∞ -category of cones on p.

The Yoneda lemma gives us a description of the *n*-simplices of $\mathcal{C}_{/p}$ as

$$(\mathcal{C}_{/p})_n \cong \hom_p(\Delta^n * L, \mathcal{C}).$$

Proposition 1.15. Let $p: L \to \mathcal{C}$ be a map of simplial sets with \mathcal{C} an ∞ -category. There is an ∞ -category $\mathcal{C}_{p/}$ characterized by the following universal property: For every simplicial set K, there is a natural bijection

$$\hom_{\mathbf{sSet}}(K, \mathcal{C}_{p/}) \cong \hom_{\mathbf{sSet}_{L/}}(L \to L * K, L \to \mathcal{C}) \cong \hom_p(L * K, \mathcal{C})$$

where

$$\hom_p(L*K,\mathcal{C}) \cong \left\{ \begin{array}{c} L \\ \downarrow \\ L*K \longrightarrow \mathcal{C} \end{array} \right\}.$$

The ∞ -category $\mathcal{C}_{p/}$ is called the ∞ -category of co-cones on p.

Remark 1.16. We often consider the special case: let \mathcal{C} be an ∞ -category and let $x \in \mathcal{C}$ be an object, classified by the map $\kappa_x : \Delta^0 \to \mathcal{C}$. Then the ∞ -category $\mathcal{C}_{/\kappa_x}$ is called the ∞ -category of objects over x, and is simply denoted $\mathcal{C}_{/x}$. Dually, the ∞ -category $\mathcal{C}_{\kappa_x/}$ is called the ∞ -category of objects under x, and is denoted by $\mathcal{C}_{x/}$.

Proposition 1.17. If $p:A\to B$ is a functor, then there is a natural isomorphism of simplicial sets

$$N(B/p) \cong N(B)_{/N(p)}$$
.

2. Initial and Terminal Objects

Definition 2.1. A morphism $p: X \to S$ of simplicial sets which has the right lifting property with respect to every inclusion $\partial \Delta^n \subseteq \Delta^n$ is called a *trivial fibration* or *acyclic fibration*.

Proposition 2.2. A morphism of simplicia sets is a Kan fibration and a weak equivalence if and only if it is a trivial fibration.

Definition 2.3. Let \mathcal{C} be a simplicial set. A vertex x of \mathcal{C} is final if the projection $\mathcal{C}_{/x} \to \mathcal{C}$ is a trivial fibration of simplicial sets.

The projection is defined on the *n*-cells as follows: we view $(\mathcal{C}_{/x})_n \to \mathcal{C}_n$ as

$$\hom_p(\Delta^n * \Delta^0, \mathcal{C}) \cong \hom_{\mathbf{sSet}}(\Delta^n, \mathcal{C}_{/x}) \to \hom_{\mathbf{sSet}}(\Delta^n, \mathcal{C}).$$

by the adjunction between slice and join and by the Yoneda lemma, where $p: \Delta^0 \to \mathcal{C}$ defined by p(0) = x (again, we get this from the correspondence of the Yoneda lemma: $x \in \mathcal{C}_n \leftrightarrow p: \Delta^0 \to \mathcal{C}$ with p(0) = x). Notice that

$$\hom_p(\Delta^n * \Delta^0, \mathcal{C}) = \{ \sigma : \Delta^{n+1} \to \mathcal{C} : \sigma(n+1) = x \}.$$

Hence, we define our map $(\mathcal{C}_{/x})_n \to \mathcal{C}_n$ by $(\sigma: \Delta^{n+1} \to \mathcal{C}): \sigma(n+1) = x) \mapsto \sigma|_{\Delta^{\{0,1,\ldots,n\}}}$.

Definition 2.4. Given a simplicial set S and two vertices $x, y \in S$, we define a new simplicial set $\hom_S^R(x,y)$, the space of $ight\ morphisms$ from x to y, by letting $\hom_{\mathbf{sSet}}\left(\Delta^n, \hom_S^R(x,y)\right)$ denote the set of all $z:\Delta^{n+1}\to S$ such that $z|_{\Delta^{\{n+1\}}}=y$ and $z|_{\Delta^{\{0,\dots,n\}}}$ is the constant simplex at the vertex x.

This simplicial set can also be interpreted as the pullback of the following diagram

where $\Delta^0 \to \mathcal{S}$ corresponds to the vertex x.

Proposition 2.5. The following are equivalent for an object x of an ∞ -category \mathcal{C} :

- (1) The object x is final.
- (2) The mapping spaces $\operatorname{map}_{\mathcal{C}}^{R}(x',x)$ are contractible for all $x' \in \mathcal{C}$.
- (3) Every simplicial sphere $\alpha: \partial \Delta^n \to \mathcal{C}$ such that $\alpha(n) = x$ can be filled to an entire *n*-simplex $\Delta^n \to \mathcal{C}$.

Definition 2.6. Let \mathcal{C} be a simplicial set. A vertex x of \mathcal{C} is *initial* if the projection $\mathcal{C}_{x/} \to \mathcal{C}$ is a trivial fibration.

This time the projection, defined on *n*-cells $(\mathcal{C}_{x/})_n \to \mathcal{C}_n$, is defined by $\sigma \mapsto \sigma|_{\Delta^{\{1,2,\ldots,n+1\}}}$, using the same reasoning as before.

Definition 2.7. Given a simplicial set S and two vertices $x, y \in S$, we define a new simplicial set $\operatorname{hom}_{S}^{L}(x, y)$, the space of *left morphisms* from x to y, by letting $\operatorname{hom}_{\mathbf{sSet}}\left(\Delta^{n}, \operatorname{hom}_{S}^{L}(x, y)\right)$ denote the set of all $z: \Delta^{n+1} \to S$ such that $z|_{\Delta^{\{0\}}} = x$ and $z|_{\Delta^{\{1,\dots,n+1\}}}$ is the constant simplex at the vertex y.

This simplicial set can also be interpreted as the pullback of the following diagram

$$\Delta^0 \longrightarrow \stackrel{S_{y_j}}{\longrightarrow}$$

where $\Delta^0 \to S$ corresponds to x.

Proposition 2.8. The following are equivalent for an object x of an ∞ -category \mathcal{C} :

- (1) The object x is initial.
- (2) The mapping spaces $\operatorname{map}_{\mathcal{C}}^{L}(x, x')$ are contractible for all $x' \in \mathcal{C}$.

(3) Every simplicial sphere $\alpha: \partial \Delta^n \to \mathcal{C}$ such that $\alpha(0) = x$ can be filled to an entire *n*-simplex.

Proposition 2.9. An ∞ -category of a poset (P, \leq) has a final (initial) object if and only if the poset has a maximal (minimal) object.

Proof. Suppose x is a final object in the ∞ -category $N(P, \leq)$, then x is an element of P and $N(P)_{/x} \to N(P)$ is a trivial fibration, that is, for every n, we have the right lifting property with respect to the inclusion $\partial \Delta^n \to \Delta^n$:

$$\begin{array}{ccc}
\partial \Delta^n & \longrightarrow N(P)_{/x} \\
\downarrow & & \downarrow \text{can} \\
\Delta^n & \longrightarrow N(P)
\end{array}$$

Notice that, by Proposition 1.17, $N(P)_{/x} \cong N(P_{/x})$. Let $y \in P$ be any element. By the Yoneda lemma, this corresponds to a map between simplicial sets $\Delta^0 \to N(P)$. Consider the above commutative square with n=0. We immediatly have that $\partial \Delta^0 = \emptyset$, so the lifting property reduces to:

$$\begin{array}{c}
N(P_{/x}) \\
\downarrow^{\chi} \\
\Delta^0 \longrightarrow N(P)
\end{array}$$

But the lifting property here tells us that $y \to x$ is an object in $P_{/x}$, that is $y \le x$. Since $y \in P$ was arbitrary, conclude that x is a maximal element of p.

Conversely, suppose $x \in (P, \leq)$ is a maximal element. Then, we immediately have that $P_{/x} \cong P$ which means $N(P)_{/x} \cong N(P)$. Now the lifting property is trivial for all n:

$$\begin{array}{ccc}
\partial \Delta^n & \longrightarrow N(P)_{/x} \\
\downarrow & & \cong \\
\Delta^n & \longrightarrow N(P)
\end{array}$$

Conclude by definition that $x \in N(P)$ is final.

This is a special case of the slightly more general result:

Proposition 2.10. An ∞ -category $N(\mathcal{C})$ of a category \mathcal{C} has a final (initial) object if and only if the category has a final (initial) object.

Proof. Suppose x is a final object in the ∞ -category $N(\mathcal{C})$, then x is an object in \mathcal{C} and $N(\mathcal{C})_{/x} \to N(\mathcal{C})$ is a trivial fibration, that is, for every n, we have the right lifting property with respect to the inclusion $\partial \Delta^n \to \Delta^n$:

$$\frac{\partial \Delta^n \longrightarrow N(\mathcal{C})_{/x}}{\downarrow} \operatorname{can}$$

$$\Delta^n \longrightarrow N(\mathcal{C})$$

Notice that, by Proposition 1.17, $N(\mathcal{C})_{/x} \cong N(\mathcal{C}_{/x})$. Let $y \in \text{obj}(\mathcal{C})$ be any object. By the Yoneda lemma, this corresponds to a map between simplicial sets $\Delta^0 \to N(\mathcal{C})$. Consider the above

commutative square with n = 0. Since $\partial \Delta^0 = \emptyset$, this reduces to:

$$N(C_{/x})$$
 $\downarrow^{\operatorname{can}}$
 $\Delta^0 \longrightarrow N(\mathcal{C})$

But the lifting property here tells us that $y \to x$ is an element of $C_{/x}$, that is $\hom_{\mathcal{C}}(y,x) \neq \emptyset$, and in particular, $|\hom_{\mathcal{C}}(y,x)| \geq 1$.

Let $f, g: y \to x$ be two morphisms in \mathcal{C} . Consider the lifting property for n = 1:

$$\begin{array}{ccc}
\partial \Delta^1 & \longrightarrow N(\mathcal{C}_{/x}) \\
\downarrow & & \downarrow \\
\Delta^1 & \longrightarrow N(\mathcal{C})
\end{array}$$

where $\partial \Delta^1$ takes $(0,1) \to (f,g)$ and $\Delta^1 \to N(\mathcal{C})$ represents the morphism $\mathrm{id}_y : y \to y$ in \mathcal{C} . This diagram clearly commutes (although, it might take a second to see what the top right corner does). Hence the lifting exists. The top triangle commuting tells us that there is a map $\alpha : y \to y$ in $\mathcal{C}_{/x}$ and the bottom triangle tells us that $\alpha = \mathrm{id}_y$. Thus, conclude that $|\operatorname{hom}_{\mathcal{C}}(y,x)| = 1$ and so x is a final element in \mathcal{C} since y was arbitrary.

Conversely, suppose that $x \in \text{obj}(\mathcal{C})$ is a final object: $|\text{hom}_{\mathcal{C}}(y,x)| = 1$ for all $y \in \text{obj}(\mathcal{C})$. We immediately have that $\mathcal{C}_{/x} \cong \mathcal{C}$ which means $N(\mathcal{C})_{/x} \cong N(\mathcal{C})$. Now the lifting property is trivial for all n:

$$\partial \Delta^n \longrightarrow N(\mathcal{C})_{/x}$$

$$\downarrow \qquad \qquad \qquad \cong$$

$$\Delta^n \longrightarrow N(\mathcal{C})$$

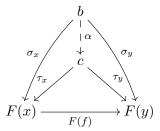
Conclude by definition that $x \in N(\mathcal{C})$ is final.

Proposition 2.11. The one-point topological space is a final object in the ∞ -category of topological spaces.

Proposition 2.12. A topological space homotopy equivalent to a one point space is a final object in the ∞ -category of topological spaces.

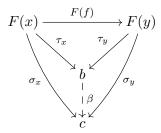
3. Limits and Colimits

Definition 3.1. Let $F: J \to \mathcal{C}$ be a functor of ordinary categories. The *limit* of F is a cone $\tau: \Delta(c) \to F$ for some $c \in \text{obj}(\mathcal{C})$ such that for any other cone $\sigma: \Delta(b) \to F$ there exists a unique $\alpha: b \to c$ such that the following diagram commutes for every $f: x \to y$ in J:



We can interpret as: limits are final objects in the category of cones on F.

Definition 3.2. Let $F: J \to \mathcal{C}$ be a functor of ordinary categories. The *colimit* of F is a co-cone $\tau: F \to \Delta(b)$ for some $b \in \text{obj}(\mathcal{C})$ such that for any other co-cone $\sigma: F \to \Delta(c)$, there exists a unique map $\beta: b \to c$ such that the following diagram commutes for all $f: x \to y$ in J.



We can interpret this as: colimits are initial objects in the category of co-cones on F.

Using these definitions as motiviation we are now ready to define limits and colimits for ∞ -categories.

Definition 3.3. Let \mathcal{C} be an ∞ -category and let $p: K \to \mathcal{C}$ be an arbitrary map of simplicial sets. A *colimit* for p is an initial object of $C_{p/}$, the ∞ -category of co-cones on p. A *limit* for p is a final object of $\mathcal{C}_{/p}$, the ∞ -category of cones on p.

Remark 3.4. A colimit of a diagram $p: K \to \mathcal{C}$ is an object of $\mathcal{C}_{p/}$. By the Yoneda lemma, we know that

$$(\mathcal{C}_{p/})_0 \cong \operatorname{hom}_{\mathbf{sSet}}(\Delta^0, \mathcal{C}_{p/}) \cong \operatorname{hom}_p(K * \Delta^0, \mathcal{C})$$

and using our previous notation, this can be interpreted as an extension of $p, \overline{p}: K^{\triangleright} \to \mathcal{C}$.

Notation 3.5. If $p: K \to \mathcal{C}$ is a diagram, we can write $\varinjlim(p)$ to denote a colimit of p and $\varprojlim(p)$ to denote a limit of p.

Proposition 3.6. A vertex is final (initial) if and only if it is a limit (colimit) of the empty diagram.

Proof. Notice that if $p:\emptyset\to\mathcal{C}$ is the empty diagram, then

$$(\mathcal{C}_{/p})_n = \text{hom}_p(\Delta^n * \emptyset, \mathcal{C}) = \text{hom}_{\mathbf{sSet}}(\Delta^n, \mathcal{C}) = \mathcal{C}_n$$

which means $C_{/p} = C$. Now simply note that x is final in C if and only if x is final in $C_{/p}$ if and only if x is a limit of p.

Proposition 3.7. Limits (colimits) in 0-categories (that is, nerves of posets) are infimums (supremums).

Proof. If $r: Q \to P$ is a map of posets, then a limit of r is a final object in $N(P)_{/r} \cong N(P_{/r})$ which we know must be a final object in $P_{/r}$, but a final object in $P_{/r}$ is just the infimum of the objects involved, that is, a infimum of a sub-poset of P.

Definition 3.8. Let \mathcal{C} be an ∞ -category and let $q: \square \to \mathcal{C}$ be a square. We define $\square = \Delta^1 * \Delta^1 \cong (\Lambda_0^2)^{\triangleright} \cong (\Lambda_2^2)^{\triangleleft}$.

- (1) The square q is a pushout if $q:(\Lambda_0^2)^{\triangleright}\to\mathcal{C}$ is a colimiting cocone, that is, a colimit.
- (2) The square q is a pullback if $q:(\Lambda_2^2)^{\triangleleft} \to \mathcal{C}$ is a limiting cone, that is, a limit.

Definition 3.9. The homotopy pushout of a diagram

$$X \xrightarrow{g} Y$$

$$f \downarrow \\ Z$$

of topological spaces is defined as $(Y \sqcup ([0,1] \times X) \sqcup Z)$ modulo the relations $f(X) \sim \{0\} \times X$ and $g(X) \sim \{1\} \times X$.

Proposition 3.10. The homotopy pushout gives a pushout square in the ∞ -category of topological spaces.

Example 3.11. Observe that the regular topological pushouts of

$$S^{1} \longrightarrow \{\text{pt}\} \text{ and } S^{1} \xrightarrow{\text{inc}} D^{2}$$

$$\downarrow \qquad \qquad \downarrow \text{inc} \downarrow$$

$$\{\text{pt}\} \qquad \qquad D^{2}$$

are $\{pt\}$ and S^2 respectively. Taking the homotopy pushout results in both having the same pushout: S^2 , making pushout behave well with respect to homotopy.

Definition 3.12. The homotopy pullback of a diagram

$$Z \xrightarrow{f} X$$

of topological spaces is defined as

$$\{(z, \gamma, y) \in Z \times \text{top}([0, 1], X) \times X : \gamma(0) = f(z), \ \gamma(1) = g(y)\}$$

Proposition 3.13. The homotopy pullback gives a pullback square in the ∞ -category of topological spaces.

 $E ext{-}mail\ address: mrrobertcardona@gmail.com}$