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General information

Instructor Shane Kelly
Email shane.kelly.uni [at] gmail [dot] com

Webpage http://www.mi.fu-berlin.de/users/shanekelly/InfinityCategories2017SS.html

University webpage http://www.fu-berlin.de/vv/de/lv/365477?query=infinity+categories&sm=314889

Textbooks “A short course on ∞-categories” by Groth
“Higher topos theory” by Lurie
“Higher algebra” by Lurie

Room SR 140/A7 Seminarraum (Hinterhaus) (Arnimallee 7)
Time Mo 16:00-18:00

About the presentation

This is a student seminar which means that the students each make one of
the presentations. The presentation should be about 75 minutes long, leaving 15
minutes for potential questions and discussion.

Students are not required to hand in any written notes. However, students are
encouraged to prepare some notes if they feel it will improve the presentation.
This should be considered seriously, especially if the student has not made many
presentations before.

For example, its helpful to have

(1) a written copy of exactly what they plan to write on the blackboard, and
(2) 5-10 pages of notes on the material to help find any gaps in your under-

standing.

If notes are prepared I will collect them and give feedback if desired.

The material listed below should be considered as a skeleton of the talk, to be
padded out with other material from the texts or examples that the student finds
interesting, relevant, enlightening, useful, etc.

If you have any questions please feel free to contact me at the email address
above.

Overview and schedule

I. 24.04. Introduction

Topology studies those aspects of spaces which are preserved by stretching and
bending, but not tearing or gluing. From this point of view, the surface of a
doughnut (with hole) is the same as the surface of a coffee cup (with handle), but
these are both different from the surface of a ball. Similarly, the figure 1 is the same
as the figures 2, 3, 5, and 7 but different from 6, 0, and 9, and these are different
from 8. The figure 4 either falls into the first or second group depending on how
you write it.
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A basic tool used to show that two spaces are different, is the fundamental
groupoid π≤1(X) of a space X. This is is the set of ways we can move from one
point to another of our space leaving a trailer of string. Two paths are considered
the same if we can slide, stretch, or contract the string path of one to the other
without leaving the space, and without moving the start and end points. It is a
groupoid because given two paths, one starting where the other finishes, we get a
third by concatenating them. The groupoid π≤1 is not changed under deformation.
So if two spaces have different π≤1’s, we can conclude that one cannot be obtained
from the other by deformation. For example, a circle is different from a sphere,
because every path on a sphere can be contracted to a point.

The fundamental groupoid only contains information about holes of “dimension
1”. It can tell that a figure 8 is different from a figure 0, but not that a sphere is
different from a doughnut. To do this, we should also use paths of fabric between
two string paths. But then we only get “dimension 2” holes, so we should use
blocks, etc, etc.

This is a basic example of an∞-category: The set of continuous maps �n
top → X,

where 0 ≤ n < ∞ and �n
top = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1}, together with

the information of which maps �n−1
top →X are the face of a map �n

top→X, and

which maps �n
top→X are obtained from a map �n−1

top →X by just not moving in one
direction.

The “∞” refers to the fact that we are allowed any n <∞, and the “category”
from the fact that we can concatenate two maps �n

top⇒X if an ending face of one
agrees with the starting face of the other.

A key difference with the fundamental groupoid, is that there is not a unique
choice for the concatenation, because we are no longer considering two maps the
same if one can be deformed to the other. However, any choice of concatenation
can be deformed into any other choice.

II. 08.05. Simplicial sets (Danijela)

In practice, it is often more practical to work with triangles rather than squares.
A simplicial set is an abstract combinatorial object, which mimics the ∞-category
of a topological space: we have a set Kn for every 0 ≤ n <∞, which we can think
of as maps from an n-dimensional triangle into a space, and various morphisms
δi : Kn → Kn−1, σi : Kn−1 → Kn telling us how the triangles fit together.

In this lecture the basic definitions are given, together with some basic examples.

This lecture will cover the following:

Define a simplicial set [May, Def.1.1], [Wei, Cor.8.1.4]. Define the simplicial set
associated to a partially ordered set.1 Define a 0-category to be any simplicial
set of this form [HTT, Exa.2.3.4.3]. Define the standard simplicial simplex ∆[n]
via the partially ordered sets [n] = {0 ≤ 1 ≤ · · · ≤ n}. Define the simplicial
set associated to a directed graph.2 Define subsimplicial set. Define the standard

1n-simplices are sequences of elements x0 ≤ x1 ≤ · · · ≤ xn.
20-simplices are vertices of the graph, 1-simplicies are paths, and n-simplicies are n-tuples of

sequential paths.
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topological simplicies ∆n
top [May, §14]. Give examples of subsimplicial sets of ∆[3],

and describe their corresponding subspaces of ∆3
top. Define the singular simplicial

set Sing•(X) of a topological space X [Lur, p.1], [HTT, p.8], [Wei, App.1.1.4].
Define the product K × K ′ of two simplicial sets K,K ′. Show that for any two
topological spaces, Sing•(X)× Sing•(Y ) = Sing•(X × Y ).

If there is time, discuss simplicial complexes [Wei, Exa.8.1.8, Ex.8.1.2, Ex.8.1.3,
Ex.8.1.4].

III. 15.05. Morphisms of simplicial sets, ∞-categories, and functors
(Kristian)

Not only do we get a simplicial set from every topological space, but by gluing
the simplicies together we can get a topological space from every simplicial set.
The first part of this lecture describes how using this we can transport the notion
of when two topological spaces are “the same” (from the point of view of topology)
to define when two simplicial sets are “the same”.

Not every simplicial set has the “composition” property possessed by simplicial
sets of topological spaces. The second part of this lecture formalises what it means
to be able to “compose” simplicies, and defines ∞-categories. It finishes with the
observation that the simplicial set of morphisms between an ∞-category is again
an ∞-category.

This lecture will cover the following:

Define a morphism of simplicial sets [May, Def.1.2]. Observe that a morphism of
directed graphs / partially ordered sets / topological spaces, induces a morphism
of the associated simplicial sets. Define the mapping space of two simplicial sets
K,K ′ as homsSet(∆

• ×K,K ′).

Define the geometric realisation of a simplicial set [Wei, 8.1.6], [May, §14]. Ob-
serve that the geometric realisation of ∆n is ∆n

top. Define a homotopy equivalence
of topological spaces [Hat, p.3]. (Optional) Give examples of homotopy equiva-
lences which are not isomorphisms. Define a weak equivalence of simplicial sets as
a morphism which induces a homotopy equivalence on the geometric realisations
[Hat, p.3].

Define the boundaries ∂∆n of ∆n. Define the inner horns Λn
k . Define Kan

fibration [HTT, Exa.2.0.0.1], [May, Def.1.7]. Define Kan complex [Gro, Def.1.5],
[HTT, Def.1.1.2.1], [May, Def.1.3, Con.1.6]. State that for any topological space
X, the simplicial set Sing•(X) is a Kan complex. (Optional) prove this. Define
an ∞-category [Gro, Def.1.7], [HTT, Def.1.1.2.4]. Show that 0-categories are ∞-
categories [HTT, Exa.2.3.4.3]. Show that for any directed graph, its associated
simplicial set is an ∞-category. (Optional) Give an example of a directed graph
whose simplicial set is not a Kan complex. (Optional) Define a 1-category as an
∞-category in which the lifting condition is uniquely satisfied. (Optional) Show
that this definition is equivalent to the classical “objects-morphisms” definition
[May, §2]. Define a functor of ∞-categories [Gro,Def.2.1], [HTT, p.39]. Define
a natural transformation of functors [Gro, Def.2.1]. Define the simplicial set of
functors between two ∞-categories [Gro, Def.2.1], [HTT, Not.1.2.7.2]. State that
it is an ∞-category [Gro, Prop.2.5(i)], [HTT, 1.2.7.3].
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IV. 22.05. Joins and slice ∞-categories (Arne)

The join of two topological spaces is the topological space we get by joining
every point in one to every point in the other. This lecture shows how to define
this for simplicial sets. A special case is when one space is a single point. This
is called the cone for obvious reasons. Joins are needed for the definition of slice
categories, which are needed for the definition of limits, in the next lecture. The
“slice” of a morphism of topological spaces f : X → Y is something like the space
of pairs (x, γ) where x ∈ X is a point and γ : [0, 1] → Y is a path starting from
f(x).

This lecture will cover the following:

Define the right and left cone of a directed graph and a partially ordered set.3

Define the cone of a topological space, and draw the picture [Hat, pp.8-9]. Define
the join of two topological spaces, and draw the picture [Hat, p.9]. Define the
join of two simplicial sets [Gro, Def.2.11], [HTT, Def.1.2.8.1]. Show that there are
isomorphisms ∆i?∆j ∼= ∆i+j+1. Define the right cone and left cone of a simplicial
set, and describe them explicitly [Gro Exa.2.14], [HTT, Not.1.2.8.4]. Show that
the ∞-categories of the cones of a directed graph and partially ordered set are the
∞-categories of their cones. Prove that for any two ∞-categories S, S′, the join
S ? S′ is an ∞-category [HTT, Prop.1.2.8.3].

Define the overcategory C/p of a map p by its universal property [Gro, Prop.2.17],
[HTT, Prop.1.2.9.2]. Define C/p explicitly [HTT, Proof of Prop.1.2.9.2]. State
(without proof) that C/p is an ∞-category [HTT, Prop.1.2.9.3]. Define the un-
dercategory by a universal property, and explicitly [HTT, Rem.1.2.9.5]. Given a
morphism of topological spaces p : Y → X, explicitly describe the ∞-category
Sing•(X)/Sing(p). Do the same for directed graphs and partially ordered sets if
there is time.

V. 29.05. Limits and colimits in ∞-categories (Robert)

Colimits are a vast generalisation and unification of unions and quotients. They
are a way of gluing spaces together. The colimit of a morphism of∞-categories is in
a precise sense its “supremum”. Dually, limits are a vast generalisation and unifica-
tion of intersections and fixed points. The limit of a morphism of∞-categories is in
a precise sense its “infimum” . They are as basic to category theory as convergence
is to analysis, but we will most immediately use them to define stable ∞-categories.
They are also used in the Seifert-van Kampen Theorem.

This lecture will cover the following:

Define the ∞-category of locally compact topological spaces.4 Recall the defini-
tion of weak equivalence and Kan fibration from Talk III. Recall that a morphism

3For a graph, add one extra vertex and one edge to / from it for every old vertex. For a
partially ordered set, add a new element defined to be less than / greater than every old element.

4The n-simplices consist of:

(1) A set of n locally compact topological spaces X0, . . . , Xn.

(2) For each i = 0, 1, . . . , n and a ≥ 0, a morphism hi,i+a : Xi×�a−1
top → Xa+i.

(3) The morphisms hi,j are required to satisfy the compatibility condition: For every a, b ≥
0, the restriction of hi,k+a+b to Xi×�a−1

top ×�
b−1
top ⊆ Xi×�a+b−1

top is the composition
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which is both a weak equivalence and a Kan fibration is called an acyclic fibration
or trivial fibration. Define initial and final objects [Gro, §2.4], [HTT, §1.2.12.3].
Show that the ∞-category of a partially ordered set has an initial (resp. final)
object if and only if it has a minimal (resp. maximal) element. (Optional) De-
fine the right mapping space [Gro, Rem.16(ii)], [HTT, p.27]. (Optional) State the
equivalent conditions of [Gro, Prop.2.23] (use the right mapping space as in [HTT,
Prop.1.2.12.4]). Show that the one point topological space is a final object in the
∞-category of topological spaces. (Optional) Show the converse—a topological
space is a final object if and only if it is contractible.

Define colimits and limits [HTT, Def.1.2.13.4]. Observe that initial (resp. fi-
nal) objects are limits (resp. colimits) of the empty diagram. Show that limits /
colimits in 0-categories are infimums / supremums. Define pushout and pullback

squares [Gro, Def.2.29]. Define the homotopy pushout of a diagram Z
f← X

g→ Y

of topological spaces as Yq[0,1]×XqZ
(f(X)∼{0}×X, g(X)∼{1}×X) . Claim that this gives a pushout

square in the ∞-category of topological spaces. (Optional) Show this claim. De-

fine the homotopy pullback of a diagram Z
f→ X

g← Y of topological spaces as
{(z, γ, y) ∈ Z × hom([0, 1], X) × Y : γ(0) = f(z), γ(q) = g(y)}. Claim that this
gives a pullback square in the ∞-category of topological spaces. (Optional) Show
this claim. (Optional) Do any / all of the following examples in the ∞-category of
topological spaces: (co)products, (co)equalisers.

(Optional) Kan extensions.

VI. 12.06. Monoidal ∞-categories (Karl)

Some of the most interesting topological spaces come equipped with a multipli-
cation, e.g., GLn(C). This defines a “multiplication” on its associated simplicial
set. Monoidal categories are those equipped with a “multiplication”.

This lecture will cover the following: TBA

VII. 19.06. Stable ∞-categories. (Vincent)

Two more canonical examples of ∞-categories are the collection of all pointed
topological spaces, and the collection of all complexes of vector spaces. The smash
product of a pointed topological space with the circle S1 corresponds to shifting a
complex of vector spaces. However, in the category of complexes of vector spaces,
this is procedure is invertible. Using colimits, there is a notion of smash-product-
with-S1 in any (pointed)∞-category, and the stable ∞-categories are those in which
this procedure is invertible.

This lecture will cover the following: TBA

hi+a,i+a+b ◦ (hi,i+a × id
�b−1

top
). Here, the inclusion �a−1

top ×�
b−1
top ⊆ �a+b−1

top is given by

((t1, . . . , ta−1), (s1, . . . , sb−1)) 7→ (t1, . . . , ta−1, 0, s1, . . . , sb−1).
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VIII. 26.06. ∞-Topoi (Georg)

This lecture will cover the following: TBA

IX. 03.07. ∞-Operads (André)

X. 10.07. Spectra (Alex)

XI. 17.07. TBC (Tommaso)

Potential further topics:

(1) Kan extensions. These are like parametrised / relative (co)limits.
(2) Universality of D−(A). The∞-category of bounded above chain complexes

of vector spaces satisfies a universal property.
(3) Spectra. This is the universal way of making the ∞-category of spaces

into a stable∞-category. The∞-category of spectra is the universal stable
∞-category.

(4) Brown Representability Theorem. A characterisation of when a functor is
of the form Map(−, X) for some object X in the category. In particular,
this allows us to identify cohomology theories with objects in the category
of spectra.

(5) Topoi. Sheaf theory, but for sheaves of spaces.
(6) Operads. Ring theory, but for spaces.
(7) Seifert-van Kampen Theorem. This says that if a topological space X is the

union of open subspaces U = {Ui ⊆ X}i∈I , and the set U is closed under
intersection, then the simplicial set of X is the colimit of the simplicial sets
of the Ui.

References

[Hat] Hatcher, Allen. Algebraic Topology. ↑
[Lur] Lurie, Jacob. What is...an ∞-category?. ↑
[HTT] Lurie, Jacob. Higher topos theory. ↑
[DAGI] Lurie, Jacob. Derived algebraic geometry I. ↑
[DAGII] Lurie, Jacob. Derived algebraic geometry, II. ↑
[May] May, Peter. Simplicial objects in algebraic topology. ↑
[Gro] Groth, Moritz. A short course on ∞-categories. ↑
[Wei] Weibel, Charles A. An introduction to homological algebra.

↑


	General information
	About the presentation
	Overview and schedule
	I. 24.04. Introduction
	II. 08.05. Simplicial sets (Danijela)
	III. 15.05. Morphisms of simplicial sets, -categories, and functors (Kristian)
	IV. 22.05. Joins and slice -categories (Arne)
	V. 29.05. Limits and colimits in -categories (Robert)
	VI. 12.06. Monoidal -categories (Karl)
	VII. 19.06. Stable -categories. (Vincent)
	VIII. 26.06. -Topoi (Georg)
	IX. 03.07. -Operads (André)
	X. 10.07. Spectra (Alex)
	XI. 17.07. TBC (Tommaso)
	References

