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General information

Instructor Shane Kelly
Email shane.kelly.uni [at] gmail [dot] com

Webpage http://www.mi.fu-berlin.de/users/shanekelly/InfinityCategories2017SS.html

University webpage http://www.fu-berlin.de/vv/de/lv/365477?query=infinity+categories&sm=314889

Textbooks “A short course on ∞-categories” by Groth
“Higher topos theory” by Lurie
“Higher algebra” by Lurie

Room SR 140/A7 Seminarraum (Hinterhaus) (Arnimallee 7)
Time Mo 16:00-18:00

About the presentation

This is a student seminar which means that the students each make one of
the presentations. The presentation should be about 75 minutes long, leaving 15
minutes for potential questions and discussion.

Students are not required to hand in any written notes. However, students are
encouraged to prepare some notes if they feel it will improve the presentation.
This should be considered seriously, especially if the student has not made many
presentations before.

For example, its helpful to have

(1) a written copy of exactly what they plan to write on the blackboard, and
(2) 5-10 pages of notes on the material to help find any gaps in your under-

standing.

If notes are prepared I will collect them and give feedback if desired.

The material listed below should be considered as a skeleton of the talk, to be
padded out with other material from the texts or examples that the student finds
interesting, relevant, enlightening, useful, etc.

If you have any questions please feel free to contact me at the email address
above.

NB

About the absence of 1-categories: This seminar will complement the course
Categories and Homotopy Theory 19234201. As such, I have avoided as much
as possible using 1-categories in the classical sense. Moreover, model categories,
simplicial categories, homotopy limits, etc only appear at the end of the course,
after they have appeared in 19234201. This means that we lose a very important
point of view on the subject, but on the other hand, it highlights homotopy theoretic
tones of the material.

(∗) About the references: Sometimes I insist on mentioning aspects of the theory
which, as stated in the references, go beyond the scope of this course. When I do
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this, the reference is marked with a star. This is a warning that the language of the
literature is not what we are using, or that there is a lot of background material
needed to understand the statement as written that we are not going to cover.

Overview and schedule

I. 24.04. Introduction

Topology studies those aspects of spaces which are preserved by stretching and
bending, but not tearing or gluing. From this point of view, the surface of a
doughnut (with hole) is the same as the surface of a coffee cup (with handle), but
these are both different from the surface of a ball. Similarly, the shape of the
written number 1 is the same as the shape of the written numbers 3, 5, and 7 but
different from 6, 0, and 9, and these are different from 8. The shape of 2 and 4
either fall into the first or second groups depending on how you write them.

A basic tool used to show that two spaces are different, is the fundamental
groupoid π≤1(X) of a space X. This is the set of ways we can move from one point
to another of our space leaving a trail of string. Two paths are considered the same
if we can slide, stretch, or contract the string path of one to the other without
leaving the space, and without moving the start and end points. It is a groupoid
because given two paths, one starting where the other finishes, we get a third by
concatenating them. The groupoid π≤1(X) is not changed under deformation, so if
two spaces have different π≤1’s, we can conclude that one cannot be obtained from
the other by deformation. For example, a circle is different from a sphere, because
every path on a sphere can be contracted to a point.

The fundamental groupoid only contains information about holes of “dimension
≤ 1”. It can tell that a figure 8 is different from a figure 0, but not that a sphere is
different from a point. To do this, we should also use paths of fabric between two
string paths. But then we only get “dimension 2” holes, so we should use blocks,
etc, etc.

This is a basic example of an∞-category: The set of continuous maps �ntop → X,
where 0 ≤ n < ∞ and �ntop = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1}, together with

the information of which maps �n−1top →X are the face of a map �ntop→X, and

which maps �ntop→X are obtained from a map �n−1top →X by just not moving in one
direction.

The “∞” refers to the fact that we are allowed any n <∞, and the “category”
from the fact that we can concatenate two maps �ntop⇒X if an ending face of one
agrees with a starting face of the other.

II. 08.05. Simplicial sets (Danijela)

In practice, it is often more practical to work with triangles rather than squares.
A simplicial set is an abstract combinatorial object, which mimics the ∞-category
of a topological space: we have a set Kn for every 0 ≤ n <∞, which we can think
of as maps from an n-dimensional triangle into a space, and various morphisms
δi : Kn → Kn−1, σi : Kn−1 → Kn telling us how the triangles fit together.
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In this lecture the basic definitions are given, together with some basic examples.

This lecture will cover the following:

Define the standard topological simplicies ∆n
top [May, §14]. Define the sets

Singn(X) associated to a topological space X [Lur, p.1], [HTT, p.8], [Wei,
App.1.1.4]*. Show that the face δi : ∆n−1

top → ∆n
top and degeneracy morphisms

σi : ∆n+1
top → ∆n

top (defined in [May, §14]) induce morphisms di : Singn(X) →
Singn−1(X) and si : Singn(X)→ Singn+1(X) which satisfy the identities of [May,
Def.1.1] and [Wei, Prop.8.1.3].

Define a simplicial set [May, Def.1.1], [Wei, Prop.8.1.3]*. Define the simplicial
set NP associated to a partially ordered set (P,≤).1 Define a 0-category to be any
simplicial set K such that there is a partially ordered set (P,≤) with K = NP
[HTT, Exa.2.3.4.3]*. Define the standard simplicial simplex ∆n = N [n] via the
partially ordered sets [n] = {0 ≤ 1 ≤ · · · ≤ n}. Define the simplicial set NG
associated to a directed graph G.2 Define the simplicial set BG associated to a
group G.3 [Wei, Exa.8.1.7].

Define subsimplicial set. Give examples of subsimplicial sets of ∆2,
and describe their corresponding subspaces of ∆2

top. In particular, consider

N{0, 1}, N{1, 2}, N{0, 2} ⊆ ∆2, and their various unions. Define the product
K × K ′ of two simplicial sets K,K ′. Show that for any two topological spaces
Sing•(X)× Sing•(Y ) = Sing•(X × Y ).

If there is time, discuss simplicial complexes [Wei, Exa.8.1.8, Ex.8.1.2, Ex.8.1.3,
Ex.8.1.4], in particular, show how to get a simplicial set SS(K) from a simplicial
complex K, and how to get a simplicial complex SC(K) from a simplicial set K,
observe that SC(SS(K)) = K, but give an example to show that SS(SC(K)) 6= K
in general.

III. 15.05. ∞-Categories (Kristian)

Not only do we get a simplicial set from every topological space, but by using
the simplicial set as a recipe to glue various ∆n

top together we can get a topological
space from every simplicial set. The first part of this lecture describes how using
this we can transport the notion of when two topological spaces are “the same”
(from the point of view of topology) to define when two simplicial sets are “the
same”.

Not every simplicial set has the “composition” property possessed by simplicial
sets of topological spaces. The second part of this lecture formalises what it means
to be able to “compose” simplicies, and defines ∞-categories. It finishes with the
observation that the simplicial set of morphisms between an ∞-category is again
an ∞-category.

1n-simplices are sequences of elements x0 ≤ x1 ≤ · · · ≤ xn. Boundaries remove an xi and

degeneracies write an xi twice in a row.
20-simplices are vertices of the graph, 1-simplicies are paths, and n-simplicies are n-tuples of

sequential paths. Boundaries concatenate two adjacent paths (or remove the first or last path)
and degeneracies insert an empty path.

3The set of n-simplicies is the cartesian product Gn (by convention BG0 is a one point set).
Boundaries multiply two adjacent elements (or remove the first or last path) and degeneracies

insert the identity element e ∈ G.
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This lecture will cover the following:

Define a morphism of simplicial sets [May, Def.1.2]. Observe that a morphism of
partially ordered sets / directed graphs / topological spaces, induces a morphism
of the associated simplicial sets. Define the mapping space of two simplicial sets
K,K ′ as homsSet(∆

•×K,K ′).

Define the geometric realisation of a simplicial set [Wei, 8.1.6], [May, §14]. Ob-
serve that the geometric realisation of ∆n is ∆n

top. Define a homotopy equivalence
of topological spaces [Hat, p.3]. (Optional) Give examples of homotopy equiva-
lences which are not isomorphisms. Define a weak equivalence of simplicial sets as
a morphism which induces a homotopy equivalence on the geometric realisations
[Hat, p.3].

Define the boundaries ∂∆n of ∆n. Define the inner horns Λnk . Define Kan
fibrations [HTT, Exa.2.0.0.1], [May, Def.1.7]. Define Kan complexes [Gro, Def.1.5],
[HTT, Def.1.1.2.1], [May, Def.1.3, Con.1.6]. State that for any topological space X,
the simplicial set Sing•(X) is a Kan complex. (Optional) Prove this. Define an∞-
category [Gro, Def.1.7], [HTT, Def.1.1.2.4]. Show that 0-categories are∞-categories
[HTT, Exa.2.3.4.3]. Show that for any directed graph, its associated simplicial set
is an ∞-category. (Optional) Give an example of a directed graph whose simplicial
set is not a Kan complex. Define an n-category as an ∞-category in which the
lifting condition is uniquely satisfied [HTT, Prop.2.3.4.9]. (Optional) Show that
this definition of 1-categories is equivalent to the classical “objects-morphisms”
definition [May, §2]. Define a functor of ∞-categories [Gro,Def.2.1], [HTT, p.39].
Define a natural transformation of functors [Gro, Def.2.1]. Define the simplicial set
of functors between two∞-categories [Gro, Def.2.1], [HTT, Not.1.2.7.2]. State that
it is an ∞-category [Gro, Prop.2.5(i)], [HTT, 1.2.7.3].

IV. 22.05. Joins and slice ∞-categories (Arne)

The join of two topological spaces is the topological space we get by adding a
path from every point in one to every point in the other. For example, if one space
is a circle, and the other a point, we get the shape of an icecream cone (without
the icecream). This lecture shows how to define this for simplicial sets. A special
case is when one space is a single point. This is called the cone for obvious reasons.
Joins are needed for the definition of slice categories, which are needed for the
definition of limits, in the next lecture. The “slice” of a morphism of topological
spaces f : X → Y is something like the space of pairs (x, γ) where x ∈ X is a point
and γ : [0, 1]→ Y is a path starting from f(x).

This lecture will cover the following:

Define the right and left cone of a directed graph and a partially ordered set.4

Define the cone of a topological space, and draw the picture [Hat, pp.8-9]. Define
the join of two topological spaces, and draw the picture [Hat, p.9]. Define the
join of two simplicial sets [Gro, Def.2.11], [HTT, Def.1.2.8.1]. Show that there are
isomorphisms ∆i?∆j ∼= ∆i+j+1. Define the right cone and left cone of a simplicial
set, and describe them explicitly [Gro Exa.2.14], [HTT, Not.1.2.8.4]. Show that
the ∞-categories of the cones of a directed graph and partially ordered set are the

4For a graph, add one extra vertex and one edge to / from it for every old vertex. For a
partially ordered set, add a new element defined to be less than / greater than every old element.
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∞-categories of their cones. Prove that for any two ∞-categories S, S′, the join
S ? S′ is an ∞-category [HTT, Prop.1.2.8.3].

Define the overcategory C/p of a map p by its universal property [Gro, Prop.2.17],
[HTT, Prop.1.2.9.2]. Define C/p explicitly [HTT, Proof of Prop.1.2.9.2]. State
(without proof) that C/p is an ∞-category [HTT, Prop.1.2.9.3]. Define the un-
dercategory by a universal property, and explicitly [HTT, Rem.1.2.9.5]. Given a
morphism of topological spaces p : Y → X, explicitly describe the ∞-category
Sing•(X)/Sing(p). Do the same for directed graphs and partially ordered sets if
there is time.

V. 29.05. Limits and colimits in ∞-categories (Robert)

Colimits are a vast generalisation and unification of unions and quotients. They
are a way of gluing spaces together. The colimit of a collection of morphisms
of ∞-categories is in a precise sense the “supremum” of this collection. Dually,
limits are a vast generalisation and unification of intersections, fixed points, and
kernels. The limit of a collection of morphisms of ∞-categories is in a precise sense
the “infimum” of this collection. (Co)Limits are as basic to category theory as
convergence is to analysis, but we will most immediately use them to define stable
∞-categories. They are also used in the Seifert-van Kampen Theorem.

This lecture will cover the following:

Define the∞-category of topological spaces.5 Recall the definition of weak equiv-
alence and Kan fibration from Talk III. Recall that a morphism which is both a
weak equivalence and a Kan fibration is called an acyclic fibration or trivial fibra-
tion. Define initial and final objects [Gro, §2.4], [HTT, §1.2.12.3]. Show that the
∞-category of a partially ordered set has an initial (resp. final) object if and only
if it has a minimal (resp. maximal) element. (Optional) State the equivalent con-
ditions of [Gro, Prop.2.23] (use the right mapping space [Gro, Rem.16(ii)], [HTT,
p.27] as in [HTT, Prop.1.2.12.4]). Show that the one point topological space is a
final object in the ∞-category of topological spaces. State that a topological space
homotopy equivalent to a one point topological space is a final object. (Optional)
Prove this. (Optional) Find sufficient and necessary conditions for a topological
space to be a final object.

Define colimits and limits [HTT, Def.1.2.13.4]. Observe that initial (resp. final)
objects are colimits (resp. limits) of the empty diagram. Show that limits / colimits
in 0-categories (i.e., nerves of partially ordered sets) are infimums / supremums.
Define pushout and pullback squares [Gro, Def.2.29].

5The n-simplices consist of:

(1) A set of n+1 topological spaces X0, . . . , Xn.

(2) For each i = 0, . . . , n−1 and a = 1, . . . , n−i, a morphism hi,i+a : Xi×�a−1
top → Xa+i.

(3) The morphisms hi,j are required to satisfy the compatibility condition: For every

a, b, the restriction of hi,k+a+b to Xi×�a−1
top ×�

b−1
top ⊆ Xi×�a+b−1

top is the composition

hi+a,i+a+b ◦ (hi,i+a × id
�b−1

top
). Here, the inclusion �a−1

top ×�
b−1
top ⊆ �a+b−1

top is given by

((t1, . . . , ta−1), (s1, . . . , sb−1)) 7→ (t1, . . . , ta−1, 0, s1, . . . , sb−1).
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Define the homotopy pushout of a diagram Z
f← X

g→ Y of topological spaces

as Yq[0,1]×XqZ
(f(X)∼{0}×X, g(X)∼{1}×X) . Claim that this gives a pushout square in the ∞-

category of topological spaces. (Optional) Show this claim. Define the homo-

topy pullback of a diagram Z
f→ X

g← Y of topological spaces as {(z, γ, y) ∈
Z × hom([0, 1], X) × Y : γ(0) = f(z), γ(q) = g(y)}. Claim that this gives a pull-
back square in the ∞-category of topological spaces. (Optional) Show this claim.
(Optional) Do any / all of the following examples in the ∞-category of topological
spaces: (co)products, (co)equalisers, mapping (co)telescope.

(Optional) Define cofinal morphisms [HTT, Def.4.1.1.1]. (Optional) State the
equivalent conditions of [HTT, Prop.4.1.1.8]. (Optional) Define left Kan exten-
sions along full subcategories [HTT, Def.4.3.2.2]. (Optional) State the existence of
left Kan extensions along full subcategories when the target is cocomplete [HTT,
Cor.4.3.2.14]. (Optional) Explain why Kan extensions are more complicated along
morphisms which are not full inclusions [HTT, §4.3.3]. (Optional) Define left
extensions [HTT, Def.4.3.3.1]. (Optional) Define left Kan extensions in general
[HTT, Def.4.3.3.2]. (Optional) State that the two definitions are compatible [HTT,
Prop.4.3.3.5]. (Optional) Explain how colimits are examples of left Kan extensions.
(Optional) Explain how inverse image of (classical) sheaves along a morphism of
topological spaces is an example of a left Kan extensions.

VI. 12.06. Monoidal ∞-categories (Karl)

Some of the most interesting topological spaces come equipped with a multipli-
cation, e.g., GLn(C). This defines a “multiplication” on its associated simplicial
set. Monoidal categories are those equipped with a “multiplication”. An important
more general case is the space of loops of a topological space, written ΩX. Here,
the composition is not so straightforward.

Recall that when defining the composition of two paths γ, γ′ : [0, 1] → X in a
topological space with γ(1) = γ′(0), we get the composition γ′ ◦ γ : [0, 1] → X by
travelling faster along the first map, then faster along the second map, see [HA,
Beginning of Chap.5]. So there is a space of composition choices, and any choice
is deformable into any other. Recall also that it is important to have this choice,
because it is the only way to have associativity (γ′′ ◦ γ′) ◦ γ = γ′′ ◦ (γ′ ◦ γ). So we
want to keep track of the ∞-category of composition choices of n-paths for each
n = 0, 1, . . . , as well as the many various functors sending a composition choice of
n paths to a composition choice of k paths, for n, k = 0, 1, . . . . In practice it turns
out to be a good idea to use coCartesian fibrations to organise this data.

Given a morphism f : S → Subsets(Y ) from a set S to the set of subsets of a set
Y , we can define X = {(s, y) : s ∈ S, y ∈ f(s)} and instead work with the morphism
of sets p : X → S; (s, y) 7→ s. We can recover f as p−1, but the organisation of
the data is a little cleaner. This is the idea behind coCartesian fibrations. Instead
of a functor S → ∞-Cat from an ∞-category to the ∞-category of ∞-categories,
which is in general complicated to define and work with, we instead work with
a special class of morphisms of ∞-categories called coCartesian fibrations. These
are precisely those morphisms which are obtained analogously to the way we got
p : X → S from f : S → Subsets(Y ).
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From this point of view, the∞-category associated to ΩX is not the assignment
of an ∞-category to each n, and a functor to each [n]→ [k], but rather, a coCarte-
sian fibration C → ∆op towards the ∞-category associated to the collection of the
partially ordered sets [n].

This lecture will cover the following:

Define an inner fibration of simplicial sets [Gro, Def.1.37], [HTT, Def.2.0.0.3].
Define coCartesian morphisms [Gro, Def.4.12], [HTT, Def.2.4.1.1]. Unwrap this def-
inition (i.e., state it in terms of lifting diagrams of inclusions of horns and boundaries
of simplicies) [HTT, Rem.2.4.1.4]. Define coCartesian fibrations [Gro, Def. 4.13],
[HTT, Def.2.4.2.1].

State the principle that the∞-category of coCartesian fibrations towards an∞-
category S is equivalent to the ∞-category of functors from S to the ∞-category
of ∞-categories [HTT, Thm.3.2.0.1 and preceding paragraph]*.

More concretely: Observe that if A is an ∞-category, then A→∆0 is a coCarte-
sian fibration. Show that given two∞-categories A0, A1 and a morphism A1 → A0,
one can associate a coCartesian fibration p : NA(∆1)→ ∆1 such that p−1(0) = A0

and p−1(1) = A1 [HTT, Def.3.2.5.2].

Show that given a coCartesian fibration p : X→S, for every 0-simplex s ∈
S0, the fibre p−1(s) is an ∞-category. Claim that for any coCartesian fibration
p : X→∆1 there exists a morphism p−1(1) → p−1(0) [HTT, Lem.2.1.1.4], [HTT,
Beginning of §2.4]. Show that if p : X→S is a coCartesian fibration and σ : ∆1→S
a morphism, then p−1(σ) → ∆1 is a coCartesian fibration. Deduce that for any
coCartesian fibration p : X → S and any edge σ : ∆1 → S, there exists a morphism
p−1(σ(1))→ p−1(σ(0)).

Define the∞-category N∆op.6 Define monoidal∞-categories [Gro, Def.4.14 and
p.48], [DAGII, Def.1.1.2].

Present the following example [Gro, Exa.4.7]*, [DAGII, Def.1.1.1]*: Let G be a
group. The set of q-simplicies (G⊗)q is the set of tuples

([m0]
α1← . . .

αq←[mq], ((g0,1, g0,2, . . . , g0,m0
), . . . , (gq,1, gq,2, . . . , gq,mq

)))

such that for each 0 ≤ i < q and 0 ≤ j < mi we have

gi+1,j+1 = gi,αi(j)+1gi,αi(j)+2 . . . gi,αi(j+1)

where [m0]← . . .←[mq] is a q-tuple of N∆op, and (gi,1, gi,2, . . . , gi,mi) ∈ Gmi

for each i = 0, . . . , q. If αi(j) = αi(j+1) we interpret the right hand side
as the identity element e ∈ G. Note that considering gi = (gi,1, . . . , gi,mi

) as
an element of BGmi

, the demanded equality can be more succinctly written as
gi+1 = α∗gi. The functor G⊗ → N∆op is projection to the first component.
Observe that the preimage of [1] is the discrete ∞-category G⊗[1] = G. Observe

that the preimage of the map δ1 : [1]→[2]; 0, 1 7→ 0, 2 defines the multiplication
on G. Observe that the preimage of the map [1] → [0] determines the identity
element of G. Observe that the associativity condition (xy)z = x(yz) of G is im-
plied by the fact that the two compositions {0, 3} → {0, 1, 3} → {0, 1, 2, 3} and
{0, 3} → {0, 2, 3} → {0, 1, 2, 3} are equal. Observe that the associativity condition

6q-simplices are sequences [m0]← . . .←[mq ] of non-decreasing morphisms where [m] = {0 ≤
1 ≤ · · · ≤ m} for m = 0, 1, 2, . . . . Boundaries are given by removing an [mi] are composing
morphisms, degeneracies are given by inserting an identity morphism.
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((wx)y)z = (wx)(yz) = w(x(y(z))) = w((xy)z) = (w(xy))z is also encoded in a
similar way. Observe that for each n, the morphism G⊗[n] → (G⊗[1])

n induced by the

maps [1]→[n]; 0, 1 7→ i−1, i is an isomorphism.

Present the following example. Let (X,x) be a pointed topological space, and
we will define an ∞-category ΩX⊗. The q-simplicies are tuples

([m0]
α1← . . .

αq←[mq], (hI : ∆j
top×∆

mij

top → X)I=(i0≤...≤ij)⊆[q])

where the tuples are required to satisfy:

(1) hI(∆
j×{ek}) = x for each corner {ek} = (0, . . . , 1

k
, . . . , 0) ∈ ∆mij .

(2) For every inclusion I ′ = (i′0 ≤ . . . ≤ i′j′) ⊆ I = (i0 ≤ . . . ≤ ij) ⊆ [q]

the composition hI ◦ (∆j′×∆
mi′

j′→∆j×∆mij ) is equal to hI′ , where the

∆j′→∆j is induced by the inclusion I ′ ⊆ I and ∆
mi′

j′→∆mij is induced by
αi′

j′
αi′

j′+1αi′
j′+2 . . . αij : [mij ]→[mi′

j′
].

Observe that the fibre ΩX⊗[1] over [1] is the singular simplicial set of the loop space

Sing•Ω(X,x). More generally, observe that the fibre over [n] is the singular sim-
plicial set of the subspace of hom(∆n

top, X) consisting of those maps sending the

corners to x. Observe that the morphism ΩX⊗[n] → (ΩX⊗[1])
n induced by the maps

[1]→[n]; 0, 1 7→ i−1, i is a homotopy equivalence but not an isomorphism.

Define monoidal and lax monoidal functors [DAGII, Def.1.1.8]. Define algebras
objects [DAGII, Def.1.1.14]. Define left-tensored ∞-categories [DAGII, Def.2.1.1].
Give example [DAGII, Exa.2.1.3]. Define module objects [DAGII, Def.2.1.4].

VII. 19.06. Stable ∞-categories. (Vincent)

Two more canonical examples of ∞-categories are the collection of all pointed
topological spaces, and the collection of all complexes of vector spaces. The smash
product of a pointed topological space with the circle S1 corresponds to shifting a
complex of vector spaces. However, in the category of complexes of vector spaces,
this is procedure is invertible. Using colimits, there is a notion of smash-product-
with-S1 in any (pointed)∞-category, and the stable ∞-categories are those in which
this procedure is invertible.

This lecture will cover the following: TBA

VIII. 26.06. ∞-Topoi (Georg)

This lecture will cover the following: TBA

IX. 03.07. ∞-Operads (André)

This lecture will cover the following: TBA
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X. 10.07. Spectra (Alex)

This lecture will cover the following: TBA

XI. 17.07. Simplicial model categories (Tommaso)
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