
∞-CATEGORIES SEMINAR

Contents

“Abstract” 1

General information 2

About the presentation 2

NB 3

Overview and schedule 3

I. 24.04. Introduction 3

II. 08.05. Simplicial sets (Danijela) 4

III. 15.05. ∞-Categories (Kristian) 4

IV. 22.05. Joins and slice ∞-categories (Arne) 4

V. 29.05. Limits and colimits in ∞-categories (Robert) 5

Reminder. 08.06. “Categories and Homotopy Theory” 19234201 starts. 6

VI. 12.06. Monoidal ∞-categories (Karl) 6

VII. 19.06. Stable ∞-categories. (Vincent) 8

VIII. 26.06. ∞-Topoi (Georg) 9

IX. 03.07. ∞-Operads (André) 10
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“Abstract”

Higher category theory lies in the intersection of two major developments of
20th century mathematics: topology and category theory. It provides a framework
for settings where the morphisms between two objects form not just a set but a
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2 ∞-CATEGORIES SEMINAR

topological space, and is believed to be the best language for modern homologi-
cal algebra and sheaf theory by a steadily increasing portion of the mathematical
community.

Despite being a new discipline, higher category theory has already found spec-
tacular applications across mathematics, such as Lurie’s proof of the cobordism
hypothesis (in Mathematical Physics), and Gaitsgory-Lurie’s work on Weil’s Tam-
agawa number conjecture (in Number Theory), not to mention applications in Geo-
metric Langlands, K-theory, Mirror Symmetry, Knot Theory / Floer Homology...

This reading seminar will gently introduce some of the main concepts of higher
category theory as developped by Lurie. By the end of the seminar, the student
will be familiar enough with infinity categories that they can navigate texts written
in this new language.

General information

Instructor: Shane Kelly
Email: shane [dot] kelly [dot] uni [at] gmail [dot] com

Webpage: http://www.mi.fu-berlin.de/users/shanekelly/InfinityCategories2017SS.html

University webpage: http://www.fu-berlin.de/vv/de/lv/365477?query=infinity+categories&sm=314889

Textbooks: “A short course on ∞-categories” by Groth
“Higher topos theory” by Lurie
“Higher algebra” by Lurie
See also the bibliography at the end.

Room: SR 140/A7 Seminarraum (Hinterhaus) (Arnimallee 7)
Time: Mo 16:00-18:00

About the presentation

This is a student seminar which means that the students each make one of
the presentations. The presentation should be about 75 minutes long, leaving 15
minutes for potential questions and discussion.

Students are not required to hand in any written notes. However, students are
encouraged to prepare some notes if they feel it will improve the presentation.
This should be considered seriously, especially if the student has not made many
presentations before.

For example, its helpful to have

(1) a written copy of exactly what they plan to write on the blackboard, and
(2) 5-10 pages of notes on the material to help find any gaps in your under-

standing.

If notes are prepared I will collect them and give feedback if desired.

The material listed below should be considered as a skeleton of the talk, to be
padded out with other material from the texts or examples that the student finds
interesting, relevant, enlightening, useful, etc.

http://www.mi.fu-berlin.de/users/shanekelly/InfinityCategories2017SS.html
http://www.fu-berlin.de/vv/de/lv/365477?query=infinity+categories&sm=314889
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If you have any questions please feel free to contact me at the email address
above.

NB

About the absence of 1-categories before Talk VI: This seminar will complement
the course “Categories and Homotopy Theory” 19234201, which starts on the 8th of
June. As such, we avoid as much as possible using 1-categories in the classical sense
in the first half of the seminar. Moreover, model categories, simplicial categories,
homotopy limits, etc only appear at the end of the course, after they have appeared
in “Categories and Homotopy Theory”. This means that we lose a very important
point of view on the subject, but on the other hand, it highlights homotopy theoretic
tones of the material.

(∗) About the references: Sometimes I insist on mentioning aspects of the theory
which, as stated in the references, go beyond the scope of this course. When I do
this, the reference is marked with a star. This is a warning that the language of the
literature is not what we are using, or that there is a lot of background material
needed to understand the statement as written that we are not going to cover.

Overview and schedule

I. 24.04. Introduction

Topology studies those aspects of spaces which are preserved by stretching and
bending, but not tearing or gluing. From this point of view, the surface of a
doughnut (with hole) is the same as the surface of a coffee cup (with handle), but
these are both different from the surface of a ball. Similarly, the shape of the
written number 1 is the same as the shape of the written numbers 3, 5, and 7 but
different from 6, 0, and 9, and these are different from 8. The shape of 2 and 4
either fall into the first or second groups depending on how you write them.

A basic tool used to show that two spaces are different, is the fundamental
groupoid π≤1(X) of a space X. This is the set of ways we can move from one point
to another of our space leaving a trail of string. Two paths are considered the same
if we can slide, stretch, or contract the string path of one to the other without
leaving the space, and without moving the start and end points. It is a groupoid
because given two paths, one starting where the other finishes, we get a third by
concatenating them. The groupoid π≤1(X) is not changed under deformation, so if
two spaces have different π≤1’s, we can conclude that one cannot be obtained from
the other by deformation. For example, a circle is different from a sphere, because
every path on a sphere can be contracted to a point.

The fundamental groupoid only contains information about holes of “dimension
≤ 1”. It can tell that a figure 8 is different from a figure 0, but not that a sphere is
different from a point. To do this, we should also use paths of fabric between two
string paths. But then we only get “dimension 2” holes, so we should use blocks,
etc, etc.

This is a basic example of an∞-category: The set of continuous maps �ntop → X,
where 0 ≤ n < ∞ and �ntop = {(x1, . . . , xn) ∈ Rn : 0 ≤ xi ≤ 1}, together with

http://www.fu-berlin.de/vv/de/lv/365626?m=199248&pc=130123&sm=314889
http://www.fu-berlin.de/vv/de/lv/365626?m=199248&pc=130123&sm=314889
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the information of which maps �n−1
top →X are the face of a map �ntop→X, and

which maps �ntop→X are obtained from a map �n−1
top →X by just not moving in one

direction.

The “∞” refers to the fact that we are allowed any n <∞, and the “category”
from the fact that we can concatenate two maps �ntop⇒X if an ending face of one
agrees with a starting face of the other.

II. 08.05. Simplicial sets (Danijela)

In practice, it is often more practical to work with triangles rather than squares.
A simplicial set is an abstract combinatorial object, which mimics the ∞-category
of a topological space: we have a set Kn for every 0 ≤ n <∞, which we can think
of as maps from an n-dimensional triangle into a space, and various morphisms
δi : Kn → Kn−1, σi : Kn−1 → Kn telling us how the triangles fit together.

In this lecture the basic definitions are given, together with some basic examples.

This lecture will cover the following:

See [Danijela’s notes (scanned pdf), used with permission].

Another useful reference is: arxiv:0809.4221.

III. 15.05. ∞-Categories (Kristian)

Not only do we get a simplicial set from every topological space, but by using
the simplicial set as a recipe to glue various ∆n

top together we can get a topological
space from every simplicial set. The first part of this lecture describes how using
this we can transport the notion of when two topological spaces are “the same”
(from the point of view of topology) to define when two simplicial sets are “the
same”.

Not every simplicial set has the “composition” property possessed by simplicial
sets of topological spaces. The second part of this lecture formalises what it means
to be able to “compose” simplicies, and defines ∞-categories. It finishes with the
observation that the simplicial set of morphisms between an ∞-category is again
an ∞-category.

This lecture will cover the following:

See [Lecture notes (pdf)].

IV. 22.05. Joins and slice ∞-categories (Arne)

The join of two topological spaces is the topological space we get by adding a
path from every point in one to every point in the other. For example, if one space
is a circle, and the other a point, we get the shape of an icecream cone (without
the icecream). This lecture shows how to define this for simplicial sets. In the

https://arxiv.org/abs/0809.4221
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case one space is a single point, the join is called the cone for obvious reasons.
Joins are needed for the definition of slice categories, which are needed for the
definition of limits, in the next lecture. The “slice” of a morphism of topological
spaces f : X → Y is something like the space of pairs (x, γ) where x ∈ X is a point
and γ : [0, 1]→ Y is a path starting from f(x).

This lecture will cover the following:

Define the right and left cone of a directed graph and a partially ordered set.1

Define the cone of a topological space, and draw the picture [Hat, pp.8-9]. Define
the join of two topological spaces, and draw the picture [Hat, p.9]. Define the
join of two simplicial sets [Gro, Def.2.11], [HTT, Def.1.2.8.1]. Show that there are
isomorphisms ∆i?∆j ∼= ∆i+j+1. Define the right cone and left cone of a simplicial
set, and describe them explicitly [Gro Exa.2.14], [HTT, Not.1.2.8.4]. Show that
the ∞-categories of the cones of a directed graph and partially ordered set are the
∞-categories of their cones. Prove that for any two ∞-categories S, S′, the join
S ? S′ is an ∞-category [HTT, Prop.1.2.8.3].

Define the overcategory C/p of a map p by its universal property [Gro, Prop.2.17],
[HTT, Prop.1.2.9.2]. Define C/p explicitly [HTT, Proof of Prop.1.2.9.2]. State
(without proof) that C/p is an ∞-category [HTT, Prop.1.2.9.3]. Define the un-
dercategory by a universal property, and explicitly [HTT, Rem.1.2.9.5]. Given a
morphism of topological spaces p : Y → X, explicitly describe the ∞-category
Sing•(X)/Sing(p). Do the same for directed graphs and partially ordered sets if
there is time.

V. 29.05. Limits and colimits in ∞-categories (Robert)

Colimits are a vast generalisation and unification of unions and quotients. They
are a way of gluing spaces together. The colimit of a collection of morphisms of∞-
categories is in a precise sense the “supremum” of this collection. Dually, limits are
a vast generalisation and unification of intersections, fixed points, and kernels. The
limit of a collection of morphisms of∞-categories is in a precise sense the “infimum”
of this collection. (Co)Limits are as basic to category theory as convergence is to
analysis, but we will most immediately use them to define stable ∞-categories. If
we do the Seifert-van Kampen Theorem they will appear there too.

This lecture will cover the following:

Define the∞-category of topological spaces.2 Recall the definition of weak equiv-
alence and Kan fibration from Talk III. Claim that a morphism of simplicial sets is
a Kan fibration and a weak equivalence if and only if it is a trivial fibration (=trivial
Kan fibration) in the sense of [HTT, Exa.2.0.0.2]. Recall that a morphism which is
both a weak equivalence and a Kan fibration is called an acyclic fibration or trivial
fibration. Define initial and final objects [Gro, §2.4], [HTT, §1.2.12.3]. Show that
the ∞-category of a partially ordered set has an initial (resp. final) object if and
only if it has a minimal (resp. maximal) element. (Optional) State the equiva-
lent conditions of [Gro, Prop.2.23] (use the right mapping space [Gro, Rem.16(ii)],
[HTT, p.27] as in [HTT, Prop.1.2.12.4]). Show that the one point topological space

1For a graph, add one extra vertex and one edge to / from it for every old vertex. For a
partially ordered set, add a new element defined to be less than / greater than every old element.

2See Example XI.6 at the end of this document.
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is a final object in the ∞-category of topological spaces. State that a topologi-
cal space homotopy equivalent to a one point topological space is a final object.
(Optional) Prove this. (Optional) Find sufficient and necessary conditions for a
topological space to be a final object.

Define colimits and limits [HTT, Def.1.2.13.4]. Observe that initial (resp. final)
objects are colimits (resp. limits) of the empty diagram. Show that limits / colimits
in 0-categories (i.e., nerves of partially ordered sets) are infimums / supremums.
Define pushout and pullback squares [Gro, Def.2.29].

Define the homotopy pushout of a diagram Z
f← X

g→ Y of topological spaces
as (Y q ([0, 1]×X) q Z) modulo the relations f(X) ∼ {0}×X and g(X) ∼ {1}×X
. Claim that this gives a pushout square in the ∞-category of topological spaces.

(Optional) Show this claim. Define the homotopy pullback of a diagram Z
f→ X

g←
Y of topological spaces as {(z, γ, y) ∈ Z × hom([0, 1], X)× Y : γ(0) = f(z), γ(q) =
g(y)}. Claim that this gives a pullback square in the ∞-category of topological
spaces. (Optional) Show this claim. (Optional) Do any / all of the following
examples in the ∞-category of topological spaces: (co)products, (co)equalisers,
mapping (co)telescope.

(Optional) Define cofinal morphisms [HTT, Def.4.1.1.1]. (Optional) State the
equivalent conditions of [HTT, Prop.4.1.1.8]. (Optional) Define left Kan exten-
sions along full subcategories [HTT, Def.4.3.2.2]. (Optional) State the existence of
left Kan extensions along full subcategories when the target is cocomplete [HTT,
Cor.4.3.2.14]. (Optional) Explain why Kan extensions are more complicated along
morphisms which are not full inclusions [HTT, §4.3.3]. (Optional) Define left
extensions [HTT, Def.4.3.3.1]. (Optional) Define left Kan extensions in general
[HTT, Def.4.3.3.2]. (Optional) State that the two definitions are compatible [HTT,
Prop.4.3.3.5]. (Optional) Explain how colimits are examples of left Kan extensions.
(Optional) Explain how inverse image of (classical) sheaves along a morphism of
topological spaces is an example of a left Kan extensions.

Reminder. 08.06. “Categories and Homotopy Theory” 19234201
starts.

VI. 12.06. Monoidal ∞-categories (Karl)

Some of the most interesting topological spaces come equipped with a multipli-
cation, e.g., GLn(C). This defines a “multiplication” on its associated simplicial
set. Monoidal categories are those equipped with a “multiplication”. An important
more general case is the space of loops of a topological space, written ΩX. Here,
the composition is not so straightforward.

Recall that when defining the composition of two paths γ, γ′ : [0, 1] → X in a
topological space with γ(1) = γ′(0), we get the composition γ′ ◦ γ : [0, 1] → X by
travelling faster along the first map, then faster along the second map, see [HA,
Beginning of Chap.5]. So there is a space of composition choices, and any choice
is deformable into any other. Recall also that it is important to have this choice,
because it is the only way to have associativity (γ′′ ◦ γ′) ◦ γ = γ′′ ◦ (γ′ ◦ γ). So we
want to keep track of the ∞-category of composition choices of n-paths for each
n = 0, 1, . . . , as well as the many various functors sending a composition choice of
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n paths to a composition choice of k paths, for n, k = 0, 1, . . . . In practice it turns
out to be a good idea to use coCartesian fibrations to organise this data.

Given a morphism f : S → Subsets(Y ) from a set S to the set of subsets of a set
Y , we can define X = {(s, y) : s ∈ S, y ∈ f(s)} and instead work with the morphism
of sets p : X → S; (s, y) 7→ s. We can recover f as p−1, but the organisation of
the data is a little cleaner. This is the idea behind coCartesian fibrations. Instead
of a functor S → ∞-Cat from an ∞-category to the ∞-category of ∞-categories,
which in general may be complicated to define and work with, we instead work with
a special class of morphisms of ∞-categories called coCartesian fibrations. These
are precisely those morphisms which are obtained analogously to the way we got
p : X → S from f : S → Subsets(Y ).

From this point of view, the∞-category associated to ΩX is not the assignment
of an ∞-category to each n, and a functor to each [n]→ [k], but rather, a coCarte-
sian fibration C → ∆op towards the ∞-category associated to the collection of the
partially ordered sets [n].

This lecture will cover the following:

Define an inner fibration of simplicial sets [Gro, Def.1.37], [HTT, Def.2.0.0.3].
Define coCartesian morphisms [Gro, Def.4.12], [HTT, Def.2.4.1.1]. Unwrap this def-
inition (i.e., state it in terms of lifting diagrams of inclusions of horns and boundaries
of simplicies) [HTT, Rem.2.4.1.4]. Define coCartesian fibrations [Gro, Def. 4.13],
[HTT, Def.2.4.2.1].

State the following: “Principle. The ∞-category of coCartesian fibrations to-
wards an ∞-category S is equivalent to the ∞-category of functors from S to the
∞-category of ∞-categories” [HTT, Thm.3.2.0.1 and preceding paragraph]*.

More concretely: Observe that if A is an ∞-category, then A→∆0 is a coCarte-
sian fibration. Show that given two∞-categories A0, A1 and a morphism A1 → A0,
one can associate a coCartesian fibration p : NA(∆1)→ ∆1 such that p−1(0) = A0

and p−1(1) = A1 [HTT, Def.3.2.5.2].

Show that given a coCartesian fibration p : X→S, for every 0-simplex s ∈
S0, the fibre p−1(s) is an ∞-category. Claim that for any coCartesian fibration
p : X→∆1 there exists a morphism p−1(1) → p−1(0) [HTT, Lem.2.1.1.4], [HTT,
Beginning of §2.4]. Show that if p : X→S is a coCartesian fibration and σ : ∆1→S
a morphism, then p−1(σ) → ∆1 is a coCartesian fibration. Deduce that for any
coCartesian fibration p : X → S and any edge σ : ∆1 → S, there exists a morphism
p−1(σ(1))→ p−1(σ(0)).

Define the∞-category3 N∆op. Define monoidal∞-categories [Gro, Def.4.14 and
p.48], [DAGII, Def.1.1.2].

Present the following example [Gro, Exa.4.7]*, [DAGII, Def.1.1.1]*: Let G be a
group. The set of q-simplicies (G⊗)q is the set of tuples

([m0]
α1← . . .

αq←[mq], ((g0,1, g0,2, . . . , g0,m0), . . . , (gq,1, gq,2, . . . , gq,mq )))

such that for each 0 ≤ i < q and 0 ≤ j < mi we have

3See Example XI.4 at the end of this document.
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gi+1,j+1 = gi,αi(j)+1gi,αi(j)+2 . . . gi,αi(j+1)

where [m0]← . . .←[mq] is a q-tuple of N∆op, and (gi,1, gi,2, . . . , gi,mi) ∈ Gmi

for each i = 0, . . . , q. If αi(j) = αi(j+1) we interpret the right hand side
as the identity element e ∈ G. Note that considering gi = (gi,1, . . . , gi,mi) as
an element of BGmi , the demanded equality can be more succinctly written as
gi+1 = α∗gi. The functor G⊗ → N∆op is projection to the first component.
Observe that the preimage of [1] is the discrete ∞-category G⊗[1] = G. Observe

that the preimage of the map δ1 : [1]→[2]; 0, 1 7→ 0, 2 defines the multiplication
on G. Observe that the preimage of the map [1] → [0] determines the identity
element of G. Observe that the associativity condition (xy)z = x(yz) of G is im-
plied by the fact that the two compositions {0, 3} → {0, 1, 3} → {0, 1, 2, 3} and
{0, 3} → {0, 2, 3} → {0, 1, 2, 3} are equal. Observe that the associativity condition
((wx)y)z = (wx)(yz) = w(x(y(z))) = w((xy)z) = (w(xy))z is also encoded in a
similar way. Observe that for each n, the morphism G⊗[n] → (G⊗[1])

n induced by the

maps [1]→[n]; 0, 1 7→ i−1, i is an isomorphism.

Present the following example. Let (X,x) be a pointed topological space, and
we will define an ∞-category ΩX⊗. The q-simplicies are tuples

([m0]
α1← . . .

αq←[mq], (hI : ∆j
top×∆

mij
top → X)I=(i0≤...≤ij)⊆[q])

where the tuples are required to satisfy:

(1) hI(∆
j
top×{ek}) = x for each corner {ek} = (0, . . . , 0, 1, 0, . . . , 0) ∈ ∆

mij
top

(the 1 is in the kth coordinate).
(2) For every inclusion I ′ = (i′0 ≤ . . . ≤ i′j′) ⊆ I = (i0 ≤ . . . ≤ ij) ⊆ [q]

the composition hI ◦ (∆j′

top×∆
mi′

j′
top →∆j

top×∆
mij
top ) is equal to hI′ , where the

∆j′

top→∆j
top is induced by the inclusion I ′ ⊆ I and ∆

mi′
j′

top →∆
mij
top is induced

by αi′
j′
αi′
j′+1αi′

j′+2 . . . αij : [mij ]→[mi′
j′

].

Observe that the fibre ΩX⊗[1] over [1] is the singular simplicial set of the loop space

Sing•ΩX. More generally, observe that the fibre over [n] is the singular simplicial
set of the subspace of hom(∆n

top, X) consisting of those maps sending the cor-

ners to x. Observe that the morphism ΩX⊗[n] → (ΩX⊗[1])
n induced by the maps

[1]→[n]; 0, 1 7→ i−1, i is a homotopy equivalence but not an isomorphism.

Define monoidal and lax monoidal functors [DAGII, Def.1.1.8]. Define algebras
objects [DAGII, Def.1.1.14]. Define left-tensored ∞-categories [DAGII, Def.2.1.1].
Give example [DAGII, Exa.2.1.3]. Define module objects [DAGII, Def.2.1.4].

VII. 19.06. Stable ∞-categories. (Vincent)

Two more canonical examples of ∞-categories are the collection of all pointed
topological spaces, and the collection of all complexes of vector spaces. The smash
product of a pointed topological space with the circle S1 (called suspension) cor-
responds to shifting a complex of vector spaces. However, while every complex
of vector spaces is the shift of some other complex, not every pointed topological
space is the suspension of some other pointed topological space. Using colimits,



∞-CATEGORIES SEMINAR 9

there is a notion of smash-product-with-S1 in any (pointed) ∞-category, and the
stable ∞-categories are those in which this procedure is an equivalence.

This lecture will cover the following:

Define the ∞-category V ec of bounded complexes of vector spaces.4 Define the
∞-category Top∗ of pointed topological spaces. Define pointed ∞-categories [Gro,
Def.5.1], [DAGI, Def.2.1]. Observe that the zero vector space is both an initial
and final object of V ec. Observe that in fact, any complex homotopy equivalent
to zero is both an initial and final object of V ec. Observe that the point is both
an initial and final object of Top∗. Recall that Top is not a pointed ∞-category.
Define triangles in pointed ∞-categories [Gro, p.60], [DAGI, Def.2.4]. Define exact
and coexact triangules in pointed ∞-categories [Gro, Def.5.5], [DAGI, Def.2.4].

Observe that triangles in V ec with corners K•
f→ K ′• → Cone(f) are both exact

and coexact. In particular, if 0 → V → V ′ → V ′′ → 0 is an exact sequence of
vector spaces, then V → V ′ → V ′′ is an exact and coexact triangle. Observe that

the triangles X
f→ Y → Cone(f) in Top∗ are coexact. Observe that the triangles

Fib(f) → X
f→ Y in Top∗ are exact. Give an example of a coexact triangle in

Top∗ which is not exact, and an exact triangle which is not coexact. Define kernel
and cokernels in pointed ∞-categories [DAGI, Def.2.6]. Define stable ∞-infinity
categories [Gro. Def.5.11], [DAGI, Def.2.9]. Observe that V ec is stable, but Top∗
is not stable.

Define the homotopy category h(C) of an ∞-category C using the construction
π(C) of [HTT], (resp. τ1(C) of [Gro]), [Gro, Prop.1.15]*, [HHT, §1.2.3]*. Observe
that morphisms of h(V ec) are morphisms of chain complexes up to chain homo-
topy, and the morphisms of h(Top) are the morphisms of topological spaces up to
homotopy. Observe that h(C) is a 1-category.

Define the suspension Σ and loop Ω functors of a pointed ∞-category admitting
pushouts and pullbacks [Gro, Def.5.8 and preceding text], [DAGI, Rem.3.2]. Ex-
plain that in such an∞-category C, for any objects X,Y ∈ C0 the set of morphisms
homhC(ΣX,Y ) in the homotopy category is a group, and the set of morphisms
homhC(ΣΣX,Y ) is an abelian group.5 State that if C is a stable ∞-category, then
hC, equipped with the class of (co)exact triangles, satisfies the axioms (TR1)-(TR4)
[Gro, Thm.5.15], [DAGI, Def.3.1, Thm.3.11]. Prove any or all of these axioms (note
the proof of the octahedral axiom (TR4) is surprisingly simple in this setting).

VIII. 26.06. ∞-Topoi (Georg)

Classical (1-)topoi arise in a number of different ways:

4See Example XI.7 at the end of this document.
5 Step 1. Observe that ΣX is the colimit of any diagram of the form

0←X→X←X→ . . .←X→0, and ΣX t ΣX t · · · t ΣX is the colimit of any diagram of the form
0←X→0←X→ . . .←X→0.

Step 2. Observe that by sending some X’s to zero in such a diagram, we obtain a map
ΣX → ΣX t ΣX t · · · t ΣX.

Step 3. Observe that this induces maps homhC(ΣX,Y )×· · ·×homhC(ΣX,Y )→ homhC(ΣX,Y ).
Step 4. Observe that any zero morphism ΣX → 0→ Y induces a unit element for this operation.
Step 5. Observe that homhC(ΣΣX,Y ) admits two multiplications which are compatible. There-
fore, by the Eckman-Hilton Lemma they are the same. Consequently, this multiplication is

commutative.
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(1) As generalisations of topological spaces.
(2) As generalisations of set theory as a logical foundation of mathematics.
(3) As a class of cocomplete (1-)categories that can be defined using generators

and relations.

Recall that not every ∞-category is cocomplete, that is, not every ∞-category
admits all colimits. A canonical and practically useful way to embed an∞-category
C in a cocomplete ∞-category is to consider the ∞-category P (C) = Fun(Cop,S)
of functors from Cop to the ∞-category of spaces S. Objects of this category are
called presheaves for historical reasons.

In the case that C is the nerve NOp(X) of the partially ordered set Op(X)
of open sets of a topological space X, the category P (NOp(X)) contains a very
interesting full subcategory—the category Shv(NOp(X)) of sheaves. A functor
F : NOp(X)op → S is a sheaf if for any open covering U = {Ui ⊆ V }i∈I of
some open V ⊆ X which is closed under intersection (i.e., for all Ui, Uj ∈ U we
have Ui ∩ Uj ∈ U), we can reconstruct F (V ) as the limit limF |NU of the induced
diagram NUop → S. Every presheaf can be forced to be a sheaf—there is a functor
P (NOp(X)) → Shv(NOp(X)). In fact, this is the universal functor which forces
two presheaves to be equivalent if for every point x ∈ X they agree on a sufficiently
small neighbourhood.

If we think of P (NOp(X)) as the cocomplete∞-category generated by NOp(X),
then we can think of the functor P (NOp(X))→ Shv(NOp(X)) as enforcing certain
relations, in this case, the relation that two presheaves “agreeing” on an open cover
are in fact equivalent.

∞-Categories built in this way—cocompletion of some smaller ∞-category and
then forcing relations of a certain kind—arise in a much more general setting than
classical topological spaces.

This lecture will be a more advanced talk, covering material of the speaker’s
choice.

IX. 03.07. ∞-Operads (André)

We have already mentioned that not every topological space is of the form ΩX
for some topological space X. For example, each ΩX is connected. But not every
connected topological space is of the form ΩX either. In the homotopy category,
there is a canonical group structure on ΩX, but the 7-sphere S7 admits such a
structure in the homotopy category (induced by the octonians) but cannot be a loop
space by a Steenrod algebra operations argument. To recognise that ΩX is a loop
space, we recall that for each n, there is a contractible space of “multiplications”
(ΩX)n → ΩX satisfying various conditions. Such an object is called a group like
monoid, over the E1-operad (the operad is the collection of contractible spaces of
multiplications).

In this talk, we work towards understanding the statement of this recognition
principle—that the functor sending a pointed space to its associated grouplike E1-
operad is an equivalence of categories.

This lecture will cover the following: TBA
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X. 10.07. Spectra (Alex)

We studied stable ∞-categories in Talk VII and observed that not every ∞-
category is stable. There is however, a universal stable ∞-category associated to
any ∞-category. More precisely, for any (presentable) ∞-category C, there is a

colimit preserving functor C → S(C) such that the ∞-category FunL(C,D) of
colimit preserving functors from C to any (presentable) stable ∞-category D is

equivalent to FunL(S(C), D), the category of colimit preserving functors out of
S(C).

There are at least two ways to do this. One way is as follows: we would like
the loop functor Ω : C → C to be an equivalence. So one could take the inverse

limit of the diagram · · · Ω→ C
Ω→ C

Ω→ C in the ∞-category of ∞-categories.
There is a more concrete description of this ∞-category via spectra. A spectrum,
or rather, an Ω-spectrum in Top is, classically, a sequence of topological spaces
(X0, X1, . . . ) with homotopy equivalences Xi → ΩXi+1. If there is time we may
discuss the ∞-category version of this description. One can think of Xi as the
“ith component” in the limit described above. It is informative to observe that if
we replace a complex of vector spaces K by its shifted truncations (τ≤iK)[i] and
canonical morphisms (τ≤iK)[−i]→ (τ≤i+1K)[−i−1] we don’t lose any information.
Indeed, the ∞-category of chain complexes is equivalent to the ∞-category of Ω-
spectra of bounded-below-zero chain complexes.

Another way of constructing the stabilisation of an ∞-category is via excisive

functors from Sfin∗ , the category of pointed objects in the smallest sub-∞-category
of spaces S containing the terminal object. An excisive functor is one sending
pushout squares to pullback squares. Given such a functor F , we obtain a Ω-
spectrum in the classical sense by defining Xn = F (ΣnS0), and the structural
morphisms come from the property F (ΣnS0) = ΩF (Σn−1S0). Conversely, given

any Ω-spectrum one can extend this to a functor on all of Sfin∗ .

This latter procedure, using excisive functors, is where this talk will start. This is
also useful foundation work for learning about Goodwillie calculus. If there is time,
we will discuss the Ω-spectrum point of view and observe that the two constructions
produce equivalent categories.

This lecture will cover the following: TBA

XI. 17.07. Simplicial model categories (Tommaso)

Simplicial categories and model categories are older notions that predate ∞-
categories. What we have been calling ∞-categories are more properly called
quasi-categories, and they are just one of many equivalent theories of∞-categories,
simplicial categories being another theory.

A simplicial category is like a 1-category, but instead of a set of morphisms, we
have a simplicial set of morphisms associated to every pair of objects. There is
an equivalence between the theory of quasi-categories and the theory of simplicial
categories in a very precise sense. This equivalence is very useful. There are many
constructions, such as the Yoneda embedding from Talk VIII, which are trivial
in the category of simplicial categories. Another example is the construction of
(co)limits. While (co)limits in ∞-categories are defined by a universal property
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rather than a construction, in simplicial categories there is a a concrete construction.
Moving to the world of simplicial categories gives a way to calculate (co)limits in
∞-categories.

While there is a quasi-category associated to any model category, there may be
many model categories associated to a given (presentable) quasi-category. Choosing
a model category giving a quasi-category is analogous to choosing a basis for a
vector space. Model categories also give a language for comparing various theories—
there is a model category of quasi-categories, and a model category of simplicial
categories, and a Quillen equivalence between these model categories.

This lecture will cover the following: TBA

Examples of ∞-categories

Example XI.1. Recall that a partially ordered set is a set P0 together with a
antisymmetric, transitive, reflexive binary relation P1 ⊆ P0 × P0. The set NPn of
n-simplicies of the nerve NP of a partially ordered set is

NPn = {(x0, . . . , xn) ∈ Pn+1
0 = P0 × · · · × P0 : (xi, xi+1) ∈ P1 for 0 ≤ i < n}.

In other words, ordered tuples x0 ≤ · · · ≤ xn. The face morphisms are

di : (x0, . . . , xn) 7→ (x0, . . . , xi−1, xi+1, . . . , xn)

and the degeneracy morphisms are

si : (x0, . . . , xn) 7→ (x0, . . . , xi, xi, . . . , xn).

Note that we could also have written NPn as the iterated fibre product P
×P0

n
1 =

P1 ×P0 · · · ×P0 P1.

Example XI.2. Recall that a group is a set G1 equipped with a multiplication
G1 × G1 → G1 which is associative, and every element g ∈ G1 admits an inverse.
The classifying space BG of G is the simplicial set whose set of n-simplicies is

Gn = Gn1 = G1 × · · · ×G1.

The set G0 has a single element. The face morphisms are

di : (g1, . . . , gn) 7→

 (g2, . . . , gn) i = 0
(g1, . . . , gigi+1, . . . , gn) 0 < i < n

(g1, . . . , gn−1) i = n

and the degeneracy morphisms are

si : (g1, . . . , gn) 7→ (g1, . . . , gi, e, gi+1, . . . , gn).

The nerve of a partially ordered set and the classifying space of a group are
special cases of the nerve of a (small classical) category.

Example XI.3. Recall that a (small classical) category is a set C0 whose elements
are called objects, a set C1 whose elements are called morphisms, four set maps

id : C0 → C1, s, t : C1 ⇒ C0,

◦ : {(f, g) ∈ C1 × C1 : s(g) = t(f)} → C1; (f, g) 7→ g ◦ f
called identity, source, target, and composition respectively, such that the multipli-
cation is associative (so h ◦ (g ◦ f) = (h ◦ g) ◦ f when s(g) = t(f), s(h) = t(g)), for
every x ∈ C0 we have s(ex) = t(ex), and the images of C0 are identity elements (so
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idt(f) ◦f = f and f ◦ ids(f) = f). The nerve NC of a category is the simplicial set
whose n-simplicies for n ≥ 1 are

NCn = {(f1, . . . , fn) ∈ Cn1 : s(fi+1) = t(fi)}

and set of 0-simplices is C0. The face morphisms are

d0 = t, d1 = s : C1 → C0 for n = 1,

di : (f1, . . . , fn) 7→

 (f2, . . . , fn) i = 0
(f1, . . . , fi+1 ◦ fi, . . . , fn) 0 < i < n

(f1, . . . , fn−1) i = n

and the degeneracy morphisms are

si : (f1, . . . , fn) 7→ (f1, . . . , fi−1, idt(fi−1) = ids(fi), fi, . . . , fn).

Here is a special case of the nerve of a category.

Example XI.4. The q-simplices of ∆op are sequences [m0]← . . .←[mq] of non-
decreasing morphisms where [m] = {0 ≤ 1 ≤ · · · ≤ m} for m = 0, 1, 2, . . . . Bound-
aries are given by removing an [mi] and composing morphisms, degeneracies are
given by inserting an identity morphism.

Example XI.5. The 2-category Cat of (small classical) categories is the following
simplicial set. An n-simplex is:

(1) A tuple (C0, . . . , Cn) of n+1 (small classical) categories (cf. Example XI.3).
(2) A tuple (Fij : Ci → Cj)0≤i<j≤n of functors.
(3) A tuple (ηijk : Fik ⇒ Fjk ◦ Fij)0≤i<j<k≤n of natural transformations.
(4) The natural transformations are required to satisfy the compatibility con-

dition: for every 0 ≤ i, j, k, ` ≤ n the square

Fi`
ηij` //

ηik`

��

Fj`Fij

ηηjk`Fij

��
Fk`Fik

Fk`ηijk

// Fk`FjkFij

of natural transformations commutes.

Example XI.6. The∞-category Top of topological spaces is the following simpli-
cial set. An n-simplex is:

(1) A tuple (X0, . . . , Xn) of n+1 topological spaces.
(2) An tuple of morphisms

(hi,j : Xi×�j−i−1
top → Xj)0≤i<j≤n

where �mtop = {(t1, . . . , tm) ∈ Rm : 0 ≤ ti ≤ 1}.
(3) The morphisms hi,j are required to satisfy the compatibility condition: For

every 0 ≤ i < j < k ≤ n, we should have

hi,k(x, (s1, . . . , sj−i−1, 1, t1, . . . , tk−j−1))

= hj,k(hi,j(x, (s1, . . . , sj−i−1)), (t1, . . . , tk−j−1))

for all x ∈ Xi, (s1, . . . , sj−i−1) ∈ �j−i−1
top , (t1, . . . , tk−j−1) ∈ �k−j−1

top .
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Notice that a tuple ((X0, . . . , Xn), (hij)0≤i<j≤n) defines a morphism

fij(−)
def
= hij(−, (0, 0, . . . , 0)) : Xi → Xj

for each 0 ≤ i < j ≤ n. Moreover, for every i < i1 < i2 < · · · < ik < j the
compatibility conditions imply that

hij(−, ei1 + · · ·+ ejk) = fik,j ◦ fik−1,ik ◦ · · · ◦ fi,i1 : Xi → Xj

where ei′ = (0, . . . , 0, 1, 0, . . . , 0) is the i′th standard basis vector of Rj−i. So we
can interpret hij as a homotopy between all the possible compositions of the f ’s

with fij at the “lowest” corner of �j−i−1
top and fj−1,j ◦ fj−2,j−1 ◦ fi+1,i+2 ◦ fi,i+1

at the “highest” corner. The compatibility conditions then can be interpreted as
asking that these homotopies are compatible with all compositions.

The face morphisms are

dk : (X0, . . . , Xn, hi,j) 7→ (X0, . . . , Xk−1, Xk+1, . . . , Xn, h
′
i,j)

where

h′i,j(x, t) =

 hi,j(x, t) i < j < k
hi,j+1(x, (t1, . . . , tk−i−1, 0, tk−i, . . . , tj−i−1)) i < k ≤ j

hi+1,j+1(x, t) k ≤ i < j.

The degeneracy morphisms are

dk : (X0, . . . , Xn, hi,j) 7→ (X0, . . . , Xk, Xk, . . . , Xn, h
′
i,j)

where

h′i,j(x, t) =

 hi,j(x, t) i < j ≤ k
hi,j−1(x, (t1, . . . , tk−i−1, tk−i+1, . . . , tj−i−1)) i ≤ k < j

hi−1,j−1(x, t) k < i < j.

Here, we interpret hi,i as idXi .

Note that every sequence of continuous homomorphisms X0
f1→ · · · fn→ Xn defines

an n-simplex: choose hi,j to be the composition Xi×�j−i−1 → Xi
fi+1→ Xi+1

fi+2→
· · · fj→ Xj (i.e., the trivial homotopy).

Example XI.7. Define �nvec to be the (homological) complex of vector spaces
which in degree q, has one basis vector for every sequence of subsets

(∅ ⊆ I0 ( I1 ( · · · ( Iq ⊆ {1, . . . , n}).

Differentials are alternating sums of the maps induced by forgetting the ith Ii. An-
other way to think about this is, the basis vectors of (�nvec)q are the non-degenerate
q-simplicies of N(Subsets({1, . . . , n})) (which, not coincidentally, is isomorphic to
the n-fold cartesian product (∆1)n). The map (�nvec)q → (�nvec)q−1 is the alter-
nating sum of the maps induced by the face morphisms N(Subsets({1, . . . , n}))q →
N(Subsets({1, . . . , n}))q−1

A q-simplex of the ∞-category V ec is:

(1) A tuple (K(0), . . . ,K(q)) of q+1 complexes of vector spaces.
(2) A tuple of morphisms

(hi,j : K(i)⊗�j−i−1
vec → K(j))0≤i<j≤q.
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(3) The morphisms hi,j are required to satisfy the compatibility condition:

For every a, b ≥ 1, the restriction of hi,i+a+b to K(i)⊗�a−1
vec ⊗�b−1

vec ⊆
K(i)⊗�a+b−1

vec is the composition hi+a,i+a+b ◦ (hi,i+a ⊗ id�b−1
vec

). Here,

the inclusion �a−1
vec ⊗�b−1

vec ⊆ �a+b−1
vec is induced by the identification of

{1, . . . , b−1} with {a+1, a+2, . . . , a+b−1} and the morphism

Subsets({1, . . . , a−1})× Subsets({a+1, . . . , b+a−1})→ Subsets({1, . . . , a+b−1})

I, J 7→ I ∪ {a} ∪ J

As in the case of topological spaces, notice that given a tuple as above, for
each 0 ≤ i < j ≤ n we have a morphism fij : K(i) → K(j) induced by the
inclusion �0

vec ⊆ �j−i−1
vec corresponding to the empty set (∅ ⊆ {1, . . . , n}). The

compatibilities enforce that the inclusions �0
vec ⊆ �j−i−1

vec must be equal to the
various compositions K(i) → K(i1) → . . .K(j) of the f ’s.

For example, hi,i+2 is a chain homotopy between fi,i+2 : K(i) → K(i+2) and

fi+1,i+2 ◦ fi,i+1 : K(i) → K(i+1) → K(i+2). The other h’s can be interpreted as
higher chain homotopies between the chain homotopies.

Example XI.8. Define �n = (∆1)n to be the n-fold cartesian product. Note there
is a canonical isomorphism �n ∼= N(Subsets({1, . . . , n}).

An n-simplex of S, the ∞-category of spaces is:

(1) A tuple (K(0), . . . ,K(q)) of q+1 Kan complexes.
(2) A tuple of morphisms

(hi,j : K(i)⊗�j−i−1 → K(j))0≤i<j≤q.

(3) The morphisms hi,j are required to satisfy the compatibility condition:

For every a, b ≥ 1, the restriction of hi,i+a+b to K(i)×�a−1×�b−1 ⊆
K(i)⊗�a+b−1 is the composition hi+a,i+a+b ◦ (hi,i+a ⊗ id�b−1). Here,
the inclusion �a−1×�b−1 ⊆ �a+b−1 is induced by the identification of
{1, . . . , b−1} with {a+1, a+2, . . . , a+b−1} and the morphism

Subsets({1, . . . , a−1})× Subsets({a+1, . . . , b+a−1})→ Subsets({1, . . . , a+b−1})

I, J 7→ I ∪ {a} ∪ J

As in the case of topological spaces, notice that given a tuple as above, for each
0 ≤ i < j ≤ n we have a morphism fij : K(i) → K(j) induced by the inclusion
�0 ⊆ �j−i−1 corresponding to the empty set (∅ ⊆ {1, . . . , n}). The compati-
bilities enforce that for each subset {i1, . . . , ik} ⊆ I, the morphism associated to
the inclusion ∆0 ⊆ �j−i−1 corresponding to I must be equal to the composition
K(i) → K(i1) → . . .K(j) of the f ’s.

For example, hi,i+2 is a homotopy between fi,i+2 : K(i) → K(i+2) and fi+1,i+2 ◦
fi,i+1 : K(i) → K(i+1) → K(i+2). The other h’s can be interpreted as higher
homotopies between the homotopies.
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