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Exercise sheet 8: alternative models for (∞, 1)-categories

1 Monoidal categories with one object. I said something wrong about this in class, and
the answer is actually very interesting, so let’s try again as an exercise! Let V be a monoidal
category with one object, which has to be the unit object 1V of its tensor product ⊗.

• Let M = HomV (1V , 1V ). The set M has two binary structures: ◦ : M ×M → M
coming from composition of morphisms, and ⊗ : M ×M → M coming from tensor
product of morphisms. Prove that both are monoid structures on M .

• Prove that, for all a, b, c, d ∈M , we have

(a⊗ b) ◦ (c⊗ d) = (a ◦ c)⊗ (b ◦ d).

• Show that this implies that ⊗ = ◦ and that this common monoid structure is commu-
tative! (This is called the Eckmann-Hilton argument).

• Conclude that the category of monoidal categories with one object and monoidal func-
tors is equivalent to the category of commutative monoids.

2 Let V be a monoidal category. Show that the functor Hom(1V ,−) : V → Set has a natural
lax-monoidal structure. This is used to define the underlying category of any V -enriched
category.

3 Let V be a symmetric monoidal category. Assume that for each v ∈ V , the functor v ⊗− :
V → V admits a right adjoint Hom(v,−) : V → V . Show that these assemble into a functor

Hom(−,−) : V op × V → V

such that there are isomorphisms

V (u⊗ v, w) ' V (u,Hom(v, w))

natural in u, v, w ∈ V . We then say that V is a closed symmetric monoidal category.
Cartesian closed categories are examples of this. Show that a closed symmetric monoidal
category V is “self-enriched”: it is the underlying category of a V -category Ṽ in a natural
way (we saw this in class for cartesian closed categories).

4 Show that, if R is a commutative ring, the category of R-modules, equipped with its usual
symmetric monoidal structure, is closed in the sense of the previous exercise.

5 Let V,W be monoidal categories and F : V � W : G be an adjunction. Assume given a
lax monoidal structure on F (resp. an oplax monoidal structure on G). Construct an oplax
monoidal structure on G (resp. a monoidal structure on F ). This situation is sometimes
called a lax/colax monoidal adjunction; the term “monoidal adjunction” is usually reserved
for the more restricted situation where the left adjoint is actually monoidal (which often
occurs in practice).



6 Show that the composite functor Cat∆
N∆→ sSet

τ→ Cat of the homotopy coherent nerve fol-
lowed by the fundamental category functor is isomorphic to the homotopy category functor
h : Cat∆ → Cat.

7 Topological categories:

• Let C ∈ CatTop be a topological category. Observe that the simplicial category
Sing∗(C) is locally Kan and hence that N∆Sing∗(C) is a quasicategory.

• Let CW be the category of CW-complexes. By using the fact that there exists cartesian
closed subcategories of Top which contain all CW-complexes (the so-called convenient
subcategories of Top which we discussed earlier, like compactly generated spaces),

construct a topological enrichment C̃W ∈ CatTop of CW.

• Show that geometric realisation | − | : Kan → CW can be upgraded a functor

K̃an→ Sing∗(C̃W) of simplicial categories. More concretely, this means that one must
construct, for X,Y Kan simplicial sets, a morphism Fun(X,Y )→ Sing(Hom(|X|, |Y |)
satisfying some properties; this can be done purely using the various adjunctions.

• One can show that the functor K̃an → Sing∗(C̃W) from the previous question is a
Dwyer-Kan equivalence (Hint if you want to show this: use the fact that if X is any
simplicial set and Y is Kan, geometric realisation induces a bijection from the set of
simplicial homotopy classes of maps X → Y to the set of homotopy classes of maps
|X| → |Y ). Using a theorem of Lurie mentioned in the course, conclude that the

∞-category N∆(Sing∗(C̃W)) is equivalent to the ∞-category Spc of spaces.


