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Our topic

• Recent development in motivic homotopy theory:

Recognition principle for infinite P1-loop spaces.

• Result of M. Yakerson, A. Khan, E. Elmanto, M. Hoyois and V.

Sosnilo. (“Motivic infinite loop spaces”

https://arXiv.org/abs/1711.05248)

• Uncompromisingly ∞-categorical! Probably difficult to do otherwise

in this particular approach, but see

https://arxiv.org/abs/1907.00433 for another point of view.

• Strongly based on results by A. Ananyevskiy, G. Garkusha, A.

Neshitov, and I. Panin, developing a fundamental insight of V.

Voevodsky.
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Overview

• Motivic homotopy theory

• Infinite loop spaces in topology

• Main results

• Framed correspondences and framed transfers

• Elements of the proof
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Motivic homotopy theory



Why motivic homotopy theory?

• Empirical observation: many cohomological invariants of smooth

algebraic varieties satisfy

• Descent for the Nisnevich topology

• A1-homotopy invariance

• Some form of Poincaré duality

• Examples:

• Algebraic K-theory (Grothendieck, Quillen, Thomason,...)

• Chow groups and higher Chow groups (Grothendieck,

Fulton-MacPherson, Bloch, Levine,...)

• Hermitian K-theory (Karoubi, Schlichting, Hornbostel,...)

• Algebraic cobordism (Levine, Morel)

• Morel and Voevodsky introduced a unified framework:

• Unstable and stable motivic homotopy categories

• Generalized motivic cohomology theories
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Algebraic K-theory

• Proj(R) category of projective finite rank R-modules over a ring R.

The groupoid Proj(R)' is a commutative monoid under ⊕.

Grothendieck group: K0(R) := (π0(Proj(R)'))grp

• “Homotopically correct” group completion ⇒

K-theory space: K (R) := (Proj(R)')grp ∈ Spc

(Quillen) K-theory groups: Kn(R) := πn(K (R), [0]).

• Serre-Swan: Proj(R) = Vect(Spec(R)).

• K-theory space K (X ) for any scheme X (Quillen, Thomason).

For each V ∈ Vect(X ), get a point [V ] ∈ K (X ).

• More generally, if P ∈ DQCoh(X ) is a perfect complex (Zariski

locally quasi-isomorphic to a bounded complex of vector bundles),

we have [P] ∈ K (X ) := K (Perf(X )).
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Nisnevich topology

• The Nisnevich topology is a Grothendieck topology on schemes.

• Zariski ⊂ Nisnevich ⊂ Étale.

• Shares good properties of both: finite homotopical dimension, good

local structure results.

• An étale morphism f : U → X is a Nisnevich cover if for all points

x ∈ X , there exists a point u ∈ f −1(x) with κ(u) ' κ(x).

• Equivalently: there is a filtration ∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xn = X by

closed subschemes such that f has a section over each Xi \ Xi−1.

• The points of the Nisnevich topos are henselian local rings

(Zariski: local rings, étale: strictly henselian local rings).
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Nisnevich sheaves

• S noetherian finite dimensional scheme (e.g. variety over a field).

• A presheaf of spaces F ∈ PSh(Sm /S) is a Nisnevich sheaf iff

F (∅) = ∗ and F sends distinguished Nisnevich squares:

W �
� //

��

J

U

étalep

��

satisfying

p−1(X \ V )red ' (X \ V )red

V �
�

open
// X

to pullback squares.

• Representable presheaves are (étale hence) Nisnevich sheaves.

• Étale sheaf ∼ “Nisnevich sheaf + Galois descent.”

• Thomason: Algebraic K-theory is a Nisnevich sheaf (but not étale!)

K2(C) is uniquely divisible, K2(R) has a 2-torsion element 〈−1,−1〉
⇒ K2(R) 6= K2(C)Z/2 ⇒ K (R) 6= K (C)hZ/2. 8



A1-invariance and non-A1-invariance in algebraic geometry

• Let X be a reduced scheme. Then O×(X ) ' O×(X × A1). This is

false for non-reduced schemes:

(k[t, ε]/(ε2))× = k∗ × k[t]ε 6= k∗ × kε = (k[ε]/(ε2))×.

• Let X be a normal scheme. Then Pic(X ) ' Pic(X × A1). This is

false for non-normal schemes, e.g. the cusp y3 = x2.

• Let X = Spec(R) with R a regular k-algebra. Then

Vect(X ) ' Vect(X × A1) (Quillen-Suslin, Popescu)

This is false for X = P1!

• Let X be a regular scheme. Then K (X ) ' K (X × A1) and

CH∗(X ) ' CH∗(X × A1). Many counter-examples for singular

schemes.
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A1-invariant presheaves

• A presheaf F ∈ PSh(Sm /S) is called A1-invariant if for all

X ∈ Sm /S , the projection X × A1 → X induces

F (X ) ' F (X × A1).

• Representable presheaves are not always A1-invariant.

Ex: Gm, projective curves of genus ≥ 1. C-ex: A1,P1.

• If S is regular, then Pic(−), K (−), CH∗(−) are A1-invariant on

Sm /S .

10



A1-localisation

• Cosimplicial algebraic simplex:

∆•S := Spec(OS [t0, . . . , t•]/(
∑

ti − 1)) (' A•S).

• Suslin-Voevodsky : the localisation functor

LA1 : PSh(Sm /S)→ PShA1

(Sm /S) is the algebraic singular

complex:

LA1 (F ) = |Hom(∆•S ,F )| = U 7→ |F (U ×S ∆•S)|

This uses that A1
S is an interval object (with multiplication): we have

m : A1
S ×S A1

S → A1
S , i0, i1 : S → A1

S

satisfying some identities.
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Unstable motivic homotopy theory

• A motivic space over S is an A1-invariant Nisnevich sheaf on Sm /S .

• H(S) := ShA1

Nis(Sm /S) ∞-category of motivic spaces; we have

localisations

ShNis(Sm /S)

((
PSh(Sm /S)

LNis
55

LA1
))

Lmot

// H(S)

PShA1

(Sm /S)

77

• Lmot = colimn∈N(LNisLA1 )◦n is very inexplicit...

• Lmot is accessible, commutes with finite products, not left-exact

H(S) presentable, has universal colimits, not a ∞-topos.
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Motivic spheres

• A motivic equivalence in PSh(Sm /S) is a map inverted by Lmot.

Ex: Nisnevich equivalences, naive A1-homotopy equivalences.

• Pointed motivic homotopy category H?(S) := H(S)S/−

• Bigraded motivic spheres Sa,b := Sa−b ∧ (Gm, 1)∧b for a ≥ b ≥ 0.

• By Zariski descent and A1-invariance:

Gm
//

�� J

A1

��

induces in (Gm, 1)

��

//

R

?

��
A1 // P1 H?(S) ? // (P1,∞)

We deduce:

(P1,∞) ' S1 ∧ (Gm, 1) = S2,1

and also

(P1,∞) ' A1

A1 \ 0
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Thom spaces and purity theorem

• Thom space ThX (V ) := V
V\0 '

P(V⊕O)
P(V ) of a vector bundle V → X .

Theorem (Morel-Voevodsky purity)

Y ⊂ X closed immersion of smooth S-schemes. Motivic equivalence:

X

X \ Y
' ThY (NY/X ).

• Analogue of tubular neighbourhood theorem in topology.

• First serious use of Nisnevich (rather than just Zariski) descent.

• Key geometric fact is “implicit function theorem”:

Zariski locally on X , there is an étale morphism X → An
S such that

Y ⊂ X is pulled back from a linear inclusion An−c
S ⊂ An

S .
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Homotopy sheaves

• A1-connected components πA1

0 (F ) ∈ ShNis(Sm /S ,Set):

πA1

0 (F ) := LNis(U 7→ π0(Lmot(F )(U)))

and A1-homotopy sheaves πA1

n (F , x0) ∈ ShNis(Sm /S ,Grp/Ab)

πA1

n (F , x0) := LNis(U 7→ πn(Lmot(F )(U), x0))

• A1-homotopy sheaves detect motivic equivalences.

• Morel: for S = Spec(k) infinite perfect field, πA1

n for n ≥ 1 have very

nice properties, “controlled by their values on fields”.

• Slogan: H(k) behaves like an ∞-topos “modulo” πA1

0 .
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Stable motivic homotopy theory

• Stable motivic homotopy category:

SH(S) := H?(S)[(P1,∞)∧,(−1)] ' Spt(P1,∞)H?(S)

SH(S) is a stable presentable symmetric monoidal ∞-category.

E = (Ei )i∈N ∈ H?(S)N, τi : Ei ' Ω1
P1Ei+1 := HomH?(S)((P1,∞),Ei+1).

• We have an adjunction

Σ∞P1 : H?(S) � SH(S) : Ω∞P1

• Bigraded generalised motivic cohomology theories for E ∈ SH(S):

E a,b : Sm /S → Ab, X 7→ [Σ∞P1X+,Sa,b ⊗ E ].
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Realisation functors

• Let σ : k → C be a field embedding. Complex Betti realisation:

RB,σ : SH(k)→ SH, Σ∞P1X+ 7→ Σ∞S1 |Xσ(C)|+

• Let ι : k → R be a field embedding. Real Betti realisation:

RB,ι : SH(k)→ SH(C2), Σ∞P1X+ 7→ (Σ∞S1 |Xι(C)|+, conj)

• Slogan (Morel): motivic homotopy theory in char. 0 “mixes” the

homotopy theory of complex and real points.
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Some motivic ring spectra

Sk →MGL→ KGL,MZ

motivic analogue of the sequence

S→MU→ KU,HZ.

(For k = C, the top line realises to the bottom line)

• Motivic sphere spectrum Sk
• Algebraic cobordism spectrum

MGL = (Th(Vn))n∈N with Vn → Gr(n,∞).

• Algebraic K-theory spectrum

KGL = (Z×Gr(∞,∞),Z×Gr(∞,∞), . . .)

• Motivic cohomology spectrum (à la Dold-Thom)

MZ = (Spec(k)+,Sym∞ P1, . . . ,Sym∞(P1)∧n, . . .) (char(k) = 0)

• More: Hermitian K-theory, Morava K-theories, MSL, MSp, etc.
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Some representability results

• Let X ∈ Sm /k with k perfect. Then

MZa,b(X ) = Ha
M(X ,Z(b)) (motivic cohomology groups, via DM)

= CHb(X , 2b − a) (higher Chow groups)

• Let X be a regular scheme. Then

KGLa,b(X ) = K2b−a(X )

• Canonical isomorphism

KGL⊗MQ '
⊕
n∈Z

Σ2n,nMQ

lifting the Chern character from K-theory to higher Chow groups;

can also lift the Grothendieck-Riemann-Roch theorem to SH (Riou).
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Functoriality of SH

• Voevodsky, Ayoub: SH(−) admits a six operation formalism

(“parametrized motivic homotopy theory”).

• f : X → S finite type morphism of schemes.

f ∗ : SH(S) � SH(X ) : f∗

f! : SH(X ) � SH(S) : f !

satisfying base change, projection formula, Atiyah-Verdier duality...

Close analogy with theory of constructible/`-adic sheaves.

• Exceptional pushforward f! is determined by p! = p∗ for p proper by

the cofiber localisation sequence for an open/closed pair (j , i):

j!j
! → id→ i∗i

∗

• For f : X → S smooth, we have Σ∞P1X+ = f!f
!S in SH(S).
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Thom spectra and motivic J-homomorphism

• Let p : V → X vector bundle. The Thom spectrum

ThX (V ) := Σ∞P1

(
V

V \ 0

)
∈ SH(X ).

is ⊗-invertible in SH(X ) (recall that A1/(A1 \ 0) ' (P1,∞)).

• Extends to perfect complexes and factors through K -theory:

ThX : K (X )→ Pic(SH(X )), [V ] 7→ ThX (V )

Gives further twists for motivic cohomology theories: for ξ ∈ K (X ),

E a,b(X , ξ) := [ThX (ξ),Sa,b ⊗ E ]
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Transfers for smooth and finite étale morphisms

• Motivic Atiyah duality (Ayoub): let f : X → Y be a smooth

projective morphism in Sm /S . We have in SH(Y ):

(Σ∞P1X+)∨ = (f!f
!S)∨

= f∗f
∗S (duality exchanges operations)

= f!f
∗S (f proper)

= f!(f
!S⊗ ThX (Ω1

X/Y )−1) (purity for smooth morphisms)

• For f finite étale (⇒ Ω1
X/Y = 0) we get (Σ∞P1X+)∨ ' Σ∞P1X+ in

SH(Y ). This yields a wrong-way transfer map

Σ∞P1Y+ ' (Σ∞P1Y+)∨
f ∨−→ (Σ∞P1X+)∨ ' Σ∞P1X+

and hence finite étale transfers E a,b(X )→ E a,b(Y ) for all

generalized motivic cohomology theories.
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Infinite loop spaces in algebraic

topology



E∞-spaces à la Segal

• Segal’s category Γ := (Fin∗)
op. Write 〈n〉 := {1, 2, . . . n}+ ∈ Γ.

• Let C be an ∞-category with finite products. Segal condition on

F ∈ PSh(Γ,C ):
F 〈n〉 ∼→ F 〈1〉×n.

• Commutative monoids (= cartesian E∞-algebras):

CMon(C ) := PShSegal(Γ,C ).

• In particular get monoid structure on F 〈1〉 in Ho(C ):

F 〈1〉 × F 〈1〉 ∼←− F 〈2〉 1,27→1−→ F 〈1〉

• CMon(Spc) is the ∞-category of E∞-spaces.
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Group completion

• F ∈ CMon(C ) is called grouplike if the monoid F 〈1〉 is a group.

• If finite products distribute over colimits, the inclusion

CMon(C )grp ↪→ CMon(C ) has a left adjoint, the group completion

functor:

(−)grp : CMon(C )→ CMon(C )grp

• Ex: K (X ) grouplike E∞-space.

24



Recognition principle

• Spt≥0 ⊂ Spt connective spectra : E = (Ei )i∈N with Ei is

i-connective for all i ⇔ generated under colimits by Σ∞Spc∗.

• Let E ∈ Spt. Then the infinite loop space X0 = Ω∞E has a natural

structure of grouplike E∞-space:

X0〈n〉 := MapSpt(S×n,E ).

Theorem (Segal 74; Recognition principle)

Spt≥0 ' CMon(Spc)grp.

Ex: The group-like E∞-space K (X ) yields a K-theory spectrum K(X ).

The recognition principle can be decomposed into:

• (Reconstruction) Spt(for) : Spt(CMon(Spc)grp) ' Spt.

• (Cancellation) The functor

ΣS1 : CMon(Spc)grp → Spt(CMon(Spc))

is fully faithful. 25



Correspondences

• Let C be a 1-category (resp. ∞)-category with pullbacks,

M,N ⊂ Arr(C ) classes of morphisms satisfying some conditions.

We have a (2, 1)-category (resp. (∞, 1)-category) Corr(C ,M,N) of

correspondences (or spans):
Z

f∈M

��

g∈N

��
X Y

Composition is given by pullbacks.

• Functors out of Corr(C ,M,N) encode covariant functoriality f! in

N, contravariant functoriality g∗ in M and a (coherent) base change

formula:

f!g
∗ = g ′∗f ′!

for cartesian squares g ◦ f = f ′ ◦ g ′.
• Notation Corr(C ) := Corr(C , all, all).
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E∞-spaces via correspondences

We have an equivalence Γ ' Corr(Fin, all, inj):

X+ 7→ X , (f : X+ → Y+) 7→ (Y
f← f −1(Y ) ↪→ X ).

Proposition (Cranch)

Right Kan extension along Corr(Fin, all, inj) ⊂ Corr(Fin) gives an

equivalence

CMon(C ) ' PShΣ(Corr(Fin),C ).

(PShΣ = preserves finite products)

Slogan: ∗ ∈ Corr(Fin) is the universal commutative monoid.

Corollary

PShΣ(Corr(Fin),Spc) also models E∞-spaces.

27



Recognition principle via correspondences of manifolds

• “Morel-Voevodsky” approach to the category of spaces (Dugger):

Spc ' ShR(Mfd), X 7→ hX := Map(Π∞(−),X )

• For f : M → N finite covering map in Mfd, Atiyah duality gives a

transfer map Σ∞N+ → Σ∞M+.

• For E ∈ Spt and X = Ω∞E , this yields a map

Map(M,X ) = MapSpt(Σ∞M+,E )→ MapSpt(Σ∞N+,E ) = Map(N,X ).

Theorem (Quillen’s transfer conjecture; Bachmann-Hoyois)

Spt≥0 ' ShR(Corr(Mfd, fcov, all)), E 7→ hΩ∞E
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Motivic P1-infinite loop spaces

and framed transfers



Main result: motivic Quillen transfer conjecture

Let k be a perfect field. SHveff(k) ⊂ SH(k) very effective motivic

spectra: generated by Σ∞P1X+ under extensions and colimits.

Theorem (Motivic recognition principle; EHKSY, 2017)

Let k be a perfect field. There is a canonical equivalence

SHveff(k) ' Hfr(k)grp := ShA1

Nis(Corrfr(k))grp

of symmetric monoidal ∞-categories.

• Corrfr(k) is the category of framed correspondences: suitable

replacement, to be defined, for Corr(Mfd, fcov, all) in algebraic

geometry.

• The same result with Corrfr(k) replaced by Corr(Sm /k, fét, all) is

not known; need more transfers.
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Two auxiliary results

The recognition principle follows from

Theorem (EHKSY; Reconstruction theorem)

Let S be any base scheme. The graph functor Sm /S → Corrfr(S)

induces an equivalence

SH(S) ' SHfr(S) := SptP1 Hfr(S).

Theorem (EHKSY; Cancellation theorem)

Let k be a perfect field. The functor

Σ∞P1 : Hfr(k)grp → SHfr(k)

is fully faithful.
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Cotangent complex

• Want more transfers on motivic infinite loop spaces ⇒ looking for

morphisms which “behave” like finite étale morphisms.

• A morphism f : X → S has a cotangent complex Lf ∈ DQCoh(X )

which controls its deformation theory.

• There is a canonical map Lf → Ω1
X/S [0]; can think of L− as the

derived functor LΩ1
−/S [0].

• Let f be locally of finite presentation. Then f is smooth iff

Lf = Ω1
X/S [0] and f is étale iff Lf = 0.

• Fundamental cofiber sequence of cotangent complexes:

X
f→ Z

g→ Y ⇒ Lf → Lg◦f → f ∗Lg
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Local complete intersection morphisms

• In algebraic geometry we often need more equations than

codimension to define singular subvarieties/morphisms

⇒ notion of local complete intersection.

• A morphism of schemes f is a local complete intersection (lci)

morphism if f factors Zariski locally on X , as

f : X
i

↪−→ Z
p−→ S

with p smooth and i closed immersion cut by a regular sequence.

• f lci ⇒ Lf perfect complex with amplitude [0, 1]: locally, after

choosing a factorisation f = p ◦ i :

Lf = [NX/Z → i∗ΩZ/S ].

• In particular get K-theory class [Lf ] ∈ K (X ) and associated Thom

spectrum.
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Framed correspondences

• Let X ,Y ∈ Sm /S . A framed correspondence from X to Y is a

correspondence

Z
f finite, flat, lci

��

g

��
X Y

together with a path α : 0 ∼ [Lf ] in the K-theory space K (Z ).

• EHKSY: General construction of ∞-category of labelled

correspondences CorrF (C ,M,N) for F “labelling functor”.

• EHKSY construct a labelling functor K− triv(−) encoding α using

the fundamental cofiber sequence of cotangent complexes and the

additivity theorem in K-theory.

Corrfr(S) := CorrK−triv(SchS ,fin + flat + lci, all)| Sm /S
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Framed transfers

• Let (f , g , α) ∈ Corrfr(X ,Y ). By work of Déglise-Jin-Khan, motivic

cohomology theories have twisted transfers for finite lci morphisms

⇒ framed transfers:

E a,b(X )
g∗→ E a,b(Z )

α' E a,b(Z ,Lf )
f! (DJK)−→ E a,b(Y ).

• This suggests that motivic infinite P1-loop spaces are group-like

motivic spaces with framed transfers:

Ω∞P1 : SH(k)→ ShA1

Nis(Corrfr(k))grp

• The Main theorem claims that this is the case and there is an

equivalence:

Ω∞P1 : SHveff(k) ' ShA1

Nis(Corrfr(k))grp.
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Elements of the proof



Origin story: finite correspondences and mixed motives

• Inspiration comes from Voevodsky’s theory of finite correspondences

over a perfect field k .

• A finite correspondence Z ∈ Corrk(X ,Y ) between X ,Y ∈ Sm /k is

a finite linear combination of irreducible subvarieties Z ⊂ X ×k Y

finite and surjective onto an irreducible component.

• Voevodsky’s effective mixed motives: DMeff(k) := ShA1

Nis(Corr(k))

• P1-stabilisation: DM(k) = DMeff(k)[(P1,∞)⊗−1]
EM−→ SH(k).

• Eilenberg-Maclane functor

EM : DM(k)→ SH(k)

with EM(Z(0)) = MZ.

• Slogan: DM(k) is to SH(k) what D(Ab) is to SH.
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Two theorems of Voevodsky on DM

Let k be a perfect field.

Theorem (Strict homotopy invariance, Voevodsky)

Lmot = LNisLA1 : PSh(Corr(k))→ DMeff(k).

In other words, if F ∈ PSh(Corr(k)) is A1-invariant, then

LNisF ∈ PSh(Corr(k)) is A1-invariant and hence in DMeff(k).

Theorem (Cancellation, Voevodsky)

Σ∞P1 : DMeff(k) ↪→ DM(k) is fully faithful.
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Equationally framed correspondences

• Framed correspondences are not “geometric” enough to adapt

directly the DM theory. Need to add some coordinates!

• Let X ,Y ∈ Sm /k . An equationally framed correspondence of level

n from X to Y is a diagram

U

φ     

p étale

ttAn
X

π
  

Z

f finite

��

g

��

/�
i

??

An
Y

X Y
. �

0

>>

such that U is an étale neighbourhood of Z in An
X and the square is

cartesian. The “equation” is φ = 0 cutting out Z .

• Pass to colimit n→∞ to get: Correfr(−,Y ) : (Sm /k)op → Set.
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Equationally framed vs framed

In the geometric situation:

U

φ !!!!
p étale

ttAn
X

π   

Z
f finite

��
g

��

/� i

??

An
Y

X Y
. � 0

==

• i and p ◦ i are regular closed immersions.

• f = π ◦ (p ◦ i) is flat and lci.

• We have Np◦i ' Ni and φ induces a trivialisation Ni ' On
Z .

Since Lf = [Np◦i → On
Z ] we get a path α : [Lf ] ∼ 0 in K (Z ). This

induces a map of presheaves on Sm /k :

Correfr(−,Y )→ Corrfr(−,Y ), (Z ,U, φ, g) 7→ (Z , α).

Theorem (EHKSY; “contractibility of spaces of embeddings”)

This map is a motivic equivalence. 38



Framed analogues of Voevodsky’s theorems

Theorem (EHKSY+AGNP; strict homotopy invariance)

Let k be an infinite perfect field. Let F ∈ PShΣ(Corrfr(k))grp.

If F is A1-invariant, then LNisF is A1-invariant and hence in Hfr(k)grp.

Theorem (EHKSY+AGNP; Cancellation theorem)

Let k be a perfect field. The functor

Σ∞P1 : Hfr(k)grp → SHfr(k)

is fully faithful.

With extra work, finishes the proof of Reconstruction and Main theorem.

AGNP= Ananyevskiy, Garkusha, Neshitov, and Panin. Work on Correfr.
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Framed analogues of Voevodsky’s theorems

Theorem (EHKSY+AGNP; strict homotopy invariance)

Let k be an infinite perfect field. Let F ∈ PShΣ(Corrfr(k))grp.

If F is A1-invariant, then LNisF is A1-invariant and hence in Hfr(k)grp.

Theorem (EHKSY+AGNP; Cancellation theorem)

Let k be a perfect field. The functor

Σ∞P1 : Hfr(k)grp → SHfr(k)

is fully faithful.

With extra work, finishes the proof of Reconstruction and Main theorem.

AGNP= Ananyevskiy, Garkusha, Neshitov, and Panin. Work on Correfr.
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Motivic Barratt-Priddy-Quillen theorem

Barratt-Priddy-Quillen theorem:

Ω∞S ' (Fin')grp

Theorem (EHKSY)

Ω∞P1Sk = LNisLA1 Corrfr(−,Spec(k))grp

= LNis(LA1 Hilbfr(A∞))grp

Similar models for other “motivic Thom spectra.”

Framed finite sets:

Corrfr(X ,Spec(k)) = {f : Y → X finite flat lci + α : [0] ∼ [Lf ] ∈ K (Y )}

Framed Hilbert scheme:

Hilbfr(X )(T ) = {Z ∈ Hilb(X )(T ) + φ : NZ/X ' (Ω1
X×T/T )|Z
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