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e Recent development in motivic homotopy theory:

Recognition principle for infinite P'-loop spaces.

e Result of M. Yakerson, A. Khan, E. EImanto, M. Hoyois and V.
Sosnilo. (“Motivic infinite loop spaces”
https://arXiv.org/abs/1711.05248)

e Uncompromisingly oo-categorical! Probably difficult to do otherwise
in this particular approach, but see
https://arxiv.org/abs/1907.00433 for another point of view.

e Strongly based on results by A. Ananyevskiy, G. Garkusha, A.
Neshitov, and |. Panin, developing a fundamental insight of V.
Voevodsky.


https://arXiv.org/abs/1711.05248
https://arxiv.org/abs/1907.00433
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Motivic homotopy theory



Why motivic homotopy theory?

e Empirical observation: many cohomological invariants of smooth
algebraic varieties satisfy
e Descent for the Nisnevich topology
o Al-homotopy invariance
e Some form of Poincaré duality

e Examples:

Algebraic K-theory (Grothendieck, Quillen, Thomason,...)
Chow groups and higher Chow groups (Grothendieck,

Fulton-MacPherson, Bloch, Levine,...)
e Hermitian K-theory (Karoubi, Schlichting, Hornbostel,...)

Algebraic cobordism (Levine, Morel)

e Morel and Voevodsky introduced a unified framework:

e Unstable and stable motivic homotopy categories
e Generalized motivic cohomology theories



Algebraic K-theory

e Proj(R) category of projective finite rank R-modules over a ring R.
The groupoid Proj(R)= is a commutative monoid under &.

Grothendieck group:  Kp(R) := (mo(Proj(R)™))&™®
e “Homotopically correct” group completion =
K-theory space: K(R) := (Proj(R)~)®™ € Spc

(Quillen) K-theory groups: K,(R) := m,(K(R),[0]).
e Serre-Swan: Proj(R) = Vect(Spec(R)).
e K-theory space K(X) for any scheme X (Quillen, Thomason).
For each V € Vect(X), get a point [V] € K(X).
e More generally, if P € Dgcon(X) is a perfect complex (Zariski

locally quasi-isomorphic to a bounded complex of vector bundles),
we have [P] € K(X) := K(Perf(X)).



Nisnevich topology

e The Nisnevich topology is a Grothendieck topology on schemes.
e Zariski C Nisnevich C Etale.

e Shares good properties of both: finite homotopical dimension, good
local structure results.

e An étale morphism f : U — X is a Nisnevich cover if for all points
x € X, there exists a point u € f~1(x) with r(u) =~ K(x).

e Equivalently: there is a filtration ) = X_; C Xo C ... C X, = X by
closed subschemes such that f has a section over each X; \ X;_;.

e The points of the Nisnevich topos are henselian local rings
(Zariski: local rings, étale: strictly henselian local rings).



Nisnevich sheaves

e S noetherian finite dimensional scheme (e.g. variety over a field).

o A presheaf of spaces F € PSh(Sm /S) is a Nisnevich sheaf iff
F(0) = * and F sends distinguished Nisnevich squares:

Y satisfying

=l
L P‘/étale p_l(X\ V)red = (X\ V)red
\/(O—> X

pen

to pullback squares.
e Representable presheaves are (étale hence) Nisnevich sheaves.
e Etale sheaf ~ “Nisnevich sheaf + Galois descent.”

e Thomason: Algebraic K-theory is a Nisnevich sheaf (but not étale!)
K>(C) is uniquely divisible, K>(R) has a 2-torsion element (—1, —1)
= Ka(R) # K2(C)%/? = K(R) # K(C)"2/2, 8



Al-invariance and non-A!-invariance in algebraic geometry

e Let X be a reduced scheme. Then O*(X) ~ O*(X x Al). This is
false for non-reduced schemes:

(K[t, /()" = k* x K{tle # k* x ke = (K[el/(2))".

e Let X be a normal scheme. Then Pic(X) ~ Pic(X x A!). This is

false for non-normal schemes, e.g. the cusp y3 = x2.

o Let X = Spec(R) with R a regular k-algebra. Then
Vect(X) =~ Vect(X x A') (Quillen-Suslin, Popescu)

This is false for X = P!l

e Let X be a regular scheme. Then K(X) ~ K(X x Al) and
CH*(X) ~ CH*(X x Al). Many counter-examples for singular
schemes.



Al-invariant presheaves

e A presheaf F € PSh(Sm /S) is called A'-invariant if for all
X € Sm /S, the projection X x A — X induces

F(X) ~ F(X x Al).

e Representable presheaves are not always Al-invariant.
Ex: G, projective curves of genus > 1. C-ex: Al PL.

e If S is regular, then Pic(—), K(—), CH*(—) are Al-invariant on
Sm/S.
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Al-localisation

e Cosimplicial algebraic simplex:

A% := Spec(Oslto, ..., t]/(>_ti—1)) (=A%)

e Suslin-Voevodsky : the localisation functor
1
Las : PSh(Sm /S) — PSh* (Sm /S) is the algebraic singular

complex:
Lix(F) = [Hom(A%, F)| = U s |F(U x5 A3)]
This uses that AL is an interval object (with multiplication): we have
m: AL xs AL — AL, ig, i 0 S — AL

satisfying some identities.
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Unstable motivic homotopy theory

e A motivic space over S is an Al-invariant Nisnevich sheaf on Sm/S.

e H(S) = Shﬁils(Sm /S) oo-category of motivic spaces; we have

localisations
. ShNis(Sm /5)
PSh(Sm /S) — H(S)

Ly 1
PSh* (Sm /S)

n

o Lot = colimpen(LnisLa1)®” is very inexplicit...

e [, is accessible, commutes with finite products, not left-exact
H(S) presentable, has universal colimits, not a co-topos.
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Motivic spheres

e A motivic equivalence in PSh(Sm /S) is a map inverted by L,o.
Ex: Nisnevich equivalences, naive Al-homotopy equivalences.

e Pointed motivic homotopy category H,(S) := H(S)s,/—
e Bigraded motivic spheres S?? := $3=P A (G, 1)"P for a> b > 0.

e By Zariski descent and Al-invariance:
G —= Al induces in
| o] | o~ |

Al — P! H.(S) *x — (P, 00)

We deduce:
(P!, 00) ~ S A (G, 1) = S22

and also
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Thom spaces and purity theorem

o Thx(V) = VL\O ~ p%{ﬁ?) of a vector bundle V — X.

Theorem (Morel-Voevodsky purity)
Y C X closed immersion of smooth S-schemes. Motivic equivalence:

X

m ~ Thy(Ny/X)

e Analogue of tubular neighbourhood theorem in topology.
e First serious use of Nisnevich (rather than just Zariski) descent.

e Key geometric fact is “implicit function theorem”:

Zariski locally on X, there is an étale morphism X — AZ such that
Y C X is pulled back from a linear inclusion AT C AZ.
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Homotopy sheaves

o Al-connected components 7r§1(F) € Shyis(Sm /S, Set):
76 (F) = Lnis(U = 7o( Lot (F)(U)))
and Al-homotopy sheaves ’/TnAl(F,Xo) € Shyis(Sm /S, Grp/Ab)
T (F, x0) = Liis(U = T(Linot (F)(U), x0))
e Al-homotopy sheaves detect motivic equivalences.

e Morel: for S = Spec(k) infinite perfect field, Wﬁl for n > 1 have very
nice properties, “controlled by their values on fields”.

e Slogan: H(k) behaves like an co-topos “modulo” wf)*l.
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Stable motivic homotopy theory

e Stable motivic homotopy category:
SH(S) := H.(S)[(F", 50) ] ~ Spt s o) H..(S)
SH(S) is a stable presentable symmetric monoidal co-category.
E = (E)ien € H(S)", 7 : Ei = Qi Ejyy := Homy, (5)((P*, 00), Ejy1).
e We have an adjunction
53 1 HL(S) S SH(S) : 3
e Bigraded generalised motivic cohomology theories for E € SH(S):

E*®:Sm /S — Ab, X — [ZXX,,S**® E].
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Realisation functors

e Let 0 : k — C be a field embedding. Complex Betti realisation:
Rg, : SH(k) = SH, EIpXy— XZ|X,(C)l+
e Let t: k — R be a field embedding. Real Betti realisation:
Rg, : SH(k) = SH(G), XpiXy = (2Z|X.(C)|4,conj)

e Slogan (Morel): motivic homotopy theory in char. 0 “mixes” the
homotopy theory of complex and real points.
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Some motivic ring spectra

Sk — MGL — KGL, MZ

motivic analogue of the sequence
S — MU — KU, HZ.
(For k = C, the top line realises to the bottom line)

e Motivic sphere spectrum Sy
e Algebraic cobordism spectrum
MGL = (Th(V,))nen with V, — Gr(n, c0).
e Algebraic K-theory spectrum
KGL = (Z x Gr(oo,0),Z x Gr(co, 00), .. .)
e Motivic cohomology spectrum (a la Dold-Thom)
MZ = (Spec(k);,Sym> P!, ..., Sym>(P)"" ...) (char(k) = 0)
e More: Hermitian K-theory, Morava K-theories, MSL, MSp, etc.
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Some representability results

o Let X € Sm /k with k perfect. Then

MZ?b(X) Hy (X, Z(b)) (motivic cohomology groups, via DM)

= CH®(X,2b—a) (higher Chow groups)

e Let X be a regular scheme. Then
KGL*?(X) = Kap_a(X)
e Canonical isomorphism

KGL ® MQ ~ (P ¥*""MQ

n€eZ

lifting the Chern character from K-theory to higher Chow groups;
can also lift the Grothendieck-Riemann-Roch theorem to SH (Riou).
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Functoriality of SH

e Voevodsky, Ayoub: SH(—) admits a six operation formalism
(“parametrized motivic homotopy theory”).

e f: X — S finite type morphism of schemes.
f*:SH(S) = SH(X) : £,
fi : SH(X) = SH(S) : f'

satisfying base change, projection formula, Atiyah-Verdier duality...
Close analogy with theory of constructible/¢-adic sheaves.

e Exceptional pushforward fi is determined by pi = p, for p proper by
the cofiber localisation sequence for an open/closed pair (J,i):

Jijt = id = i
e For f : X — S smooth, we have £ X, = ff'S in SH(S).
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Thom spectra and motivic J-homomorphism

e Let p: V — X vector bundle. The Thom spectrum

Thy(V) = I (\/V\o> € SH(X).

is ®@-invertible in SH(X) (recall that Al/(Al\ 0) ~ (P!, 0)).

e Extends to perfect complexes and factors through K-theory:
Thyx : K(X) — Pic(SH(X)), [V] — Thx(V)
Gives further twists for motivic cohomology theories: for £ € K(X),

E?b(X,€) := [Thx(£),S?" ® E]
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Transfers for smooth and finite étale morphisms

e Motivic Atiyah duality (Ayoub): let f : X — Y be a smooth
projective morphism in Sm /S. We have in SH(Y):

(E5X)Y = (AF'S)
= f.f*S (duality exchanges operations)
= ff*S (f proper)
= fi(f'S® ThX(Qﬁ(/Y)_l) (purity for smooth morphisms)

e For f finite étale (= Q}(/Y =0) we get (XpPX,)Y ~ XX, in
SH(Y). This yields a wrong-way transfer map

BV~ (TRYL)Y D (TRX)Y = IRX,

and hence finite étale transfers E2:°(X) — E2P(Y) for all
generalized motivic cohomology theories.
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Infinite loop spaces in algebraic
topology




E..-spaces a la Segal

Segal's category I' := (Fin,)°P. Write (n) :={1,2,...n}, €T.

Let C be an oo-category with finite products. Segal condition on
F € PSh(l, C): N
F{n) = F{1)*".

e Commutative monoids (= cartesian E.-algebras):

CMOI’I(C) = PShSegal(ra C)

In particular get monoid structure on F(1) in Ho(C):

1,251
=3

F(1) x F(1) <~ F(2) F(1)

CMon(Spc) is the co-category of E. -spaces.
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Group completion

e F € CMon(C) is called grouplike if the monoid F(1) is a group.

e If finite products distribute over colimits, the inclusion
CMon( ()8 — CMon(C) has a left adjoint, the group completion
functor:

()& : CMon(C) — CMon(C)&'?

e Ex: K(X) grouplike E-space.
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Recognition principle

e Spt., C Spt connective spectra : E = (E;);jen with E; is
i-connective for all i < generated under colimits by X*°Spc, .

e Let E € Spt. Then the infinite loop space Xg = Q°°E has a natural
structure of grouplike E..-space:

Xo(n) = Mapspt(SX”7 E).
Theorem (Segal 74; Recognition principle)

Spt., ~ CMon(Spc)=™.

Ex: The group-like Eo-space K(X) yields a K-theory spectrum K(X).
The recognition principle can be decomposed into:

o (Reconstruction) Spt(for) : Spt(CMon(Spc)s'P) ~ Spt.
e (Cancellation) The functor

Y51 : CMon(Spc)®'® — Spt(CMon(Spc))
is fully faithful. 25



Correspondences

e Let C be a 1-category (resp. oo)-category with pullbacks,
M, N C Arr(C) classes of morphisms satisfying some conditions.
We have a (2, 1)-category (resp. (oo, 1)-category) Corr(C, M, N) of

correspondences (or spans):

Composition is given by pullbacks.

e Functors out of Corr(C, M, N) encode covariant functoriality fi in
N, contravariant functoriality g* in M and a (coherent) base change
formula:

ﬁg* — g/* fi/
for cartesian squares gof = f' o g’.
e Notation Corr(C) := Corr(C,all, all).
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E..-spaces via correspondences

We have an equivalence I ~ Corr(Fin, all, inj):
Xy o X, (F:Xe = Ye) e (YL YY) = X).

Proposition (Cranch)

Right Kan extension along Corr(Fin, all,inj) C Corr(Fin) gives an
equivalence
CMon(C) ~ PShx(Corr(Fin), C).

(PShy = preserves finite products)
Slogan: x € Corr(Fin) is the universal commutative monoid.

Corollary

PShy(Corr(Fin), Spc) also models E.-spaces.
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Recognition principle via correspondences of manifolds

e “Morel-Voevodsky” approach to the category of spaces (Dugger):
Spc ~ Sh¥(Mfd), X — hx := Map(M.o(—), X)

e For f : M — N finite covering map in Mfd, Atiyah duality gives a
transfer map N, — X>°M,..

e For E € Spt and X = Q°°E, this yields a map
Map(M, X) = Mapg, (XM, E) — Mapg, (XN, E) = Map(N, X).

Theorem (Quillen’s transfer conjecture; Bachmann-Hoyois)

Spt-, ~ Sh*(Corr(Mfd, fcov, all)), E — hg-g

28



Motivic P!-infinite loop spaces
and framed transfers




Main result: motivic Quillen transfer conjecture

Let k be a perfect field. SH'™ (k) c SH(k) motivic
spectra: generated by > 7 X, under extensions and colimits.

Theorem (Motivic recognition principle; EHKSY, 2017)
Let k be a perfect field. There is a canonical equivalence

SHY (k) ~ H (k)P .= an,S(COrrfr(k))grP

of symmetric monoidal co-categories.

e Corr™(k) is the category of . suitable
replacement, to be defined, for Corr(Mfd, fcov, all) in algebraic
geometry.

e The same result with Corr™ (k) replaced by Corr(Sm /k, fét,all) is
not known; need more transfers.
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Two auxiliary results

The recognition principle follows from
Theorem (EHKSY; Reconstruction theorem)

Let S be any base scheme. The graph functor Sm /S — Corr™(S)
induces an equivalence

SH(S) ~ SH™(S) := Spt HT(S).

Theorem (EHKSY; Cancellation theorem)
Let k be a perfect field. The functor

Y22 Hf (k)& — SH (k)

is fully faithful.
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Cotangent complex

e Want more transfers on motivic infinite loop spaces = looking for
morphisms which “behave” like finite étale morphisms.

e A morphism f : X — S has a cotangent complex L¢ € Dgcon(X)
which controls its deformation theory.

e There is a canonical map Ls — Q}US[O]; can think of L_ as the
derived functor LQ! /¢[0].

e Let f be locally of finite presentation. Then f is smooth iff
Lr = Q} 5[0] and f is étale iff Ly = 0.

e Fundamental cofiber sequence of cotangent complexes:

X5 Z5Y = L - Lgor — f'Lg
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Local complete intersection morphisms

e In algebraic geometry we often need more equations than
codimension to define singular subvarieties/morphisms
= notion of local complete intersection.

e A morphism of schemes f is a local complete intersection (lci)
morphism if f factors Zariski locally on X, as

F X755

with p smooth and 7 closed immersion cut by a regular sequence.

e f Ici = LL¢ perfect complex with amplitude [0, 1]: locally, after
choosing a factorisation f = po/:

L = [Nx/z = i"Qzys].

e In particular get K-theory class [L¢] € K(X) and associated Thom
spectrum.
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Framed correspondences

e Let X, Y € Sm/S. A framed correspondence from X to Y is a

correspondence
Z
f finite, flat,y \*
X Y

together with a path « : 0 ~ [L¢] in the K-theory space K(Z).

e EHKSY: General construction of oo-category of labelled
correspondences Corr™ (C, M, N) for F “labelling functor”.

e EHKSY construct a labelling functor K — triv(—) encoding « using
the fundamental cofiber sequence of cotangent complexes and the
additivity theorem in K-theory.

Corr™™(S) := Corr® =" (Schs, fin + flat + Ici, all)|sm /s
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Framed transfers

e Let (f,g,a) € Corr™(X, Y). By work of Déglise-Jin-Khan, motivic
cohomology theories have twisted transfers for finite Ici morphisms
= framed transfers:

E2b(X) & E2b(Z) & £28(Z,Ls) " 239 E2b(y),

e This suggests that motivic infinite P*-loop spaces are group-like
motivic spaces with framed transfers:

Q% : SH(k) — Shi(Corr™ (k))&

e The Main theorem claims that this is the case and there is an
equivalence:

Q2 : SHYT (k) ~ Shi. (Core™ (k).
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Elements of the proof




story: finite correspondences and mixed motives

Inspiration comes from Voevodsky's theory of finite correspondences
over a perfect field k.

A finite correspondence Z € Corry(X, Y) between X, Y € Sm /k is
a finite linear combination of irreducible subvarieties Z C X x, Y
finite and surjective onto an irreducible component.

Voevodsky's effective mixed motives: DM (k) := Shﬁils(Corr(k))
PL-stabilisation: DM(k) = DM°T(k)[(P, 00)®~1] 224 SH(k).
Eilenberg-Maclane functor

EM : DM(k) — SH(k)

with EM(Z(0)) = MZ.
Slogan: DM(k) is to SH(k) what D(Ab) is to SH.
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Two theorems of Voevodsky on DM

Let k be a perfect field.

Theorem (Strict homotopy invariance, Voevodsky)
Linot = LnisLar : PSh(Corr(k)) — DM (k).

In other words, if F € PSh(Corr(k)) is Al-invariant, then
LnisF € PSh(Corr(k)) is A-invariant and hence in DM (k).

Theorem (Cancellation, Voevodsky)

5 : DM (k) < DM(K) is fully faithful
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Equationally framed correspondences

e Framed correspondences are not “geometric” enough to adapt
directly the DM theory. Need to add some coordinates!

e Let X, Y € Sm /k. An equationally framed correspondence of level
n from X to Y is a diagram

PN
NN

such that U is an étale neighbourhood of Z in A% and the square is
cartesian. The “equation” is ¢ = 0 cutting out Z.

e Pass to colimit n — oo to get: Corr®™(—, Y) : (Sm /k)°P — Set.
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Equationally framed vs framed

In the geometric situation:

37( f finite z g Y
7& / \ &/o
X Y

A

e jand po are regular closed immersions.

o f=mo(poi)isflat and Ici.

o We have Nyo; >~ N; and ¢ induces a trivialisation N; ~ O%.
Since Ly = [Npoj — O%] we get a path «: [L¢] ~ 0 in K(Z). This
induces a map of presheaves on Sm /k:

Cort®™(—, Y) = Cort™(—, Y), (Z,U,,8) — (Z,a).

Theorem (EHKSY; “contractibility of spaces of embeddings”)
This map is a motivic equivalence. 33



Framed analogues of Voevodsky’s theorems

Theorem (EHKSY+AGNP; strict homotopy invariance)
Let k be an infinite perfect field. Let F € PShy(Corr™ (k))&

If F is A'-invariant, then LyisF is A'-invariant and hence in H™ (k)&™.

Theorem (EHKSY+AGNP; Cancellation theorem)
Let k be a perfect field. The functor

Y29 HE (k)& — SH™ (k)
is fully faithful.

With extra work, finishes the proof of Reconstruction and Main theorem.
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Framed analogues of Voevodsky’s theorems

Theorem (EHKSY+AGNP; strict homotopy invariance)
Let k be an infinite perfect field. Let F € PShy(Corr™ (k))&

If F is A'-invariant, then LyisF is A'-invariant and hence in H™ (k)&™.

Theorem (EHKSY+AGNP; Cancellation theorem)
Let k be a perfect field. The functor

Y29 HE (k)& — SH™ (k)
is fully faithful.

With extra work, finishes the proof of Reconstruction and Main theorem.

AGNP= Ananyevskiy, Garkusha, Neshitov, and Panin. Work on Corr°™.
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Motivic Barratt-Priddy-Quillen theorem

Barratt-Priddy-Quillen theorem:
Q°°S ~ (Fin™)&™

Theorem (EHKSY)
QXSk = LyisLyiCorr™(—, Spec(k))&™
= Lis(Lar Hilb™ (A>))8™P
Similar models for other “motivic Thom spectra.”

Framed finite sets:

Corr'™ (X, Spec(k)) = {f : Y — X finite flat Ici + o : [0] ~ [L¢] € K(Y)}

Framed Hilbert scheme:
Hilb™ (X)(T) = {Z € Hilb(X)(T) + ¢ : Nz/x ~ (. 7/7)1z
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