Macdonald polynomials

Simon Pepin Lehalleur
April 26, 2021

Review of DAHA

Initial data

- Unlike in the previous talk, I will consistently use the notation from the survey paper "Cherednik Algebras, Macdonald polynomials and combinatorics" by Haiman, for ease of reference.
- Starting point: two reduced root data (X, R, X^{\vee}, R^{\vee}) and $\left(Y, R^{\prime}, Y^{\vee}, R^{\prime \vee}\right)$. We assume they have the same Weyl group W_{0}, and fix $S \subset R, S^{\prime} \subset R^{\prime}$ and a bijection $s_{i} \leftrightarrow s_{i}^{\prime}$ with $\left(W_{0}, S\right) \simeq\left(W_{0}, S^{\prime}\right)$.
- We assume for simplicity that the associated root systems are dual, so that we have a bijection $R^{\prime} \simeq R^{\vee}$. The case when they are equal is also possible but slightly more complicated notationally. In particular, we have a canonical perfect W_{0}-equivariant pairing of root lattices $Q_{0} \times Q_{0}^{\prime} \rightarrow \mathbb{Z}$.
- We fix a W_{0}-extension of that pairing of the form

$$
(-,-): X \times Y \rightarrow \mathbb{Z} / m
$$

for some integer $m \geq 1$.

Example: GL_{n}

We will illustrate some concepts in the case where both root data are equal to the self-dual GL_{n} root datum:

$$
\left(\mathbb{Z}^{n},\left\{e_{i}-e_{j} \mid 1 \leq i \neq j \leq n\right\}, \mathbb{Z}^{n},\left\{e_{i}-e_{j} \mid 1 \leq i \neq j \leq n\right\}\right)
$$

with fixed choice of simple roots

$$
S=\left\{\alpha_{i}=e_{i}-e_{i+1}, 1 \leq i \leq n-1\right\}
$$

and finite Weyl group $W_{0}=S_{n}$. The pairing $X \times Y \rightarrow \mathbb{Z}$ is then the standard inner product on \mathbb{Z}^{n}, and $m=1$ works.

Extended double affine Weyl groups

- Set $\tilde{X}=X \oplus \mathbb{Z} \delta / m, \tilde{Y}=Y \oplus Y \oplus \mathbb{Z} \delta^{\prime} / m$. Extend the coroots by $\left\langle\delta, \alpha_{i}^{\vee}\right\rangle$. Set $\alpha_{0}=\delta-\theta$ and let α_{0}^{\vee} be the extension of $-\theta^{\vee}$ with $\left\langle\delta, \alpha_{0}^{\vee}\right\rangle=0$. This makes \tilde{X} into an affine root system with simple roots $\tilde{S}=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n}\right)$ and simple coroots $\left(\alpha_{0}^{\vee}, \alpha_{1}^{\vee}, \ldots, \alpha_{n}^{\vee}\right)$.
- $\mathrm{GL}_{n}: \theta=e_{1}-e_{n}$.
- Using $(-,-)$, we get an action of Y on \tilde{X} (resp. X on \tilde{Y}) which extends to actions of extended affine Weyl groups $W_{e}=Y \rtimes W_{0}$ (resp. $W_{e}^{\prime}=W_{0} \ltimes X$) and gives rise to the extended double affine Weyl groups $W_{e} \ltimes \tilde{X}\left(\right.$ resp. $\left.\tilde{Y} \rtimes W_{e}^{\prime}\right)$.

Proposition

There is a canonical isomorphism $W_{e} \ltimes \tilde{X} \simeq \tilde{Y} \rtimes W_{e}^{\prime}$ which is the identity on X, Y, W_{0} and sends $q=x^{\delta}$ to $y^{-\delta}$.

The group formerly known as Ω

- There are also (non-extended) affine Weyl groups $W_{a}=Q_{0}^{\prime} \rtimes W_{0}$ and $W_{a}^{\prime}=W_{0} \ltimes Q_{0}$. We have $W_{a} \subset W_{e}$ and $W_{a}^{\prime} \subset W_{e}^{\prime}$.
- Let $\Pi=W_{e} / W_{a} \simeq Y / Q_{0}^{\prime}$ (abelian, not necc. finite). Then the pairing $(-,-)$ gives a canonical isomorphism
$\Pi \simeq\left(X / Q_{0}\right)^{*} \simeq\left(W_{e}^{\prime} / W_{a}^{\prime}\right)^{*}=:\left(\Pi^{\prime}\right)^{*}$.
- We have $W_{e} \simeq \Pi \ltimes W_{a}$ and $W_{e}^{\prime} \simeq W_{a}^{\prime} \ltimes \Pi^{\prime}$, and similarly for the extended double affine Weyl groups.
- For GL_{n}, the groups Π and Π^{\prime} are free cyclic groups; Π^{\prime} has generator π^{\prime} acting on $X\left(\right.$ via $\left.W_{e}^{\prime}\right)$ as

$$
\pi^{\prime}\left(\lambda_{1}, \ldots, \lambda_{n}\right)=\left(\lambda_{n}+1, \lambda_{1}, \ldots, \lambda_{n-1}\right) .
$$

Double affine braid groups

- Using the Coxeter group W_{a}, its extension W_{e} and the action on \tilde{X}, we can take inspiration from the Bernstein presentation of extended affine braid groups to define the (left) double affine braid group $B\left(W_{e}, \tilde{X}\right):=\Pi \ltimes B\left(W_{a}, \tilde{X}\right)$ with $B\left(W_{a}, \tilde{X}\right)$ the group generated by $B\left(W_{a}\right)$ and \tilde{X} with the additional relations $(0 \leq i \leq n)$:
- If $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=0$, then $x^{\lambda} T_{i}=T_{i} x^{\lambda}$.
- If $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=1$, then $x^{s_{i} \lambda}=T_{i} x^{\lambda} T_{i}$.
- Similarly we have a (right) double affine braid group $B\left(\tilde{Y}, W_{e}^{\prime}\right):=B\left(\tilde{Y}, W_{a}^{\prime}\right) \rtimes \Pi^{\prime}$ with $B\left(\tilde{Y}, W_{a}^{\prime}\right)$ generated by $B\left(W_{a}^{\prime}\right)$ and \tilde{Y} together with the relations
- If $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=0$, then $x^{\lambda} T_{i}=T_{i} x^{\lambda}$.
- If $\left\langle\lambda, \alpha_{i}^{\vee}\right\rangle=1$, then $x^{s_{i} \lambda}=T_{i}^{-1} x^{\lambda} T_{i}^{-1}$.

Cherednik duality theorem

Theorem

The isomorphism $W_{e} \ltimes \tilde{X} \simeq \tilde{Y} \rtimes W_{e}^{\prime}$ lifts to an isomorphism of double affine braid groups

$$
B\left(W_{e}, \tilde{X}\right) \simeq B\left(\tilde{Y}, W_{e}^{\prime}\right)
$$

which is the identity on \tilde{X}, \tilde{Y}, the braid group $B\left(W_{0}\right)$ and maps $q=x^{\delta}$ to $q=y^{\delta^{\prime}}$.

Double affine Hecke algebras

- We fix a commutative ground $\operatorname{ring} \mathcal{A}$ and elements $u_{i} \in \mathcal{A}^{\times}$for $0 \leq i \leq n$, with $u_{i}=u_{j}$ if α_{i} and α_{j} are in the same W-orbit.
- The (left) double affine Hecke algebra $\mathcal{H}\left(W_{e}, \tilde{X}\right)$ is the quotient of the group algebra $\mathcal{A} B\left(W_{e}, \tilde{X}\right)$ by the quadratic relations $(0 \leq i \leq n)$

$$
\left(T_{i}-u_{i}\right)\left(T_{i}+u_{i}^{-1}\right)=0
$$

- In other words, $\mathcal{H}\left(W_{e}, \tilde{X}\right)$ is generated by elements $\left(x^{\lambda}\right)_{\lambda \in X}, \pi \in \Pi$, T_{0}, \ldots, T_{n} and $x^{\delta}=q^{1 / m}$ satisfying the relations of the double affine braid group and the quadratic relations. But recall that $W_{e}=Y \rtimes W_{0}$ so we also have elements $\left(y^{\mu}\right)_{y \in Y}$ in there!

Proposition (PBW property)

The elements $\left(y^{\mu} T_{w} x^{\lambda}\right)_{\mu \in Y, w \in W_{0}, \lambda \in X}$ form a basis of $\mathcal{H}\left(W_{e}, \tilde{X}\right)$ as a free $\mathcal{A}\left[q^{ \pm 1 / m}\right]$-module.

Duality

The (right) double affine Hecke algebra $\mathcal{H}\left(\tilde{Y}, W_{e}^{\prime}\right)$ is the quotient of the group algebra $\mathcal{A} B\left(W_{e}, \tilde{X}\right)$ by the quadratic relations $(0 \leq i \leq n)$

$$
\left(T_{i}-u_{i}\right)\left(T_{i}+u_{i}^{-1}\right)=0
$$

(There is a reindexing of the parameters u_{i} in some cases which I will not explain.)

Theorem

There is an isomorphism $\mathcal{H}\left(W_{e}, \tilde{X}\right) \simeq \mathcal{H}\left(\tilde{Y}, W_{e}^{\prime}\right)$ which is an isomorphism on all the generators $X, Y, q, T_{i}, T_{0}, T_{0}^{\prime}, \Pi, \Pi^{\prime}$.

Polynomial representation

- The (extended) affine Hecke algebra $\Pi \cdot \mathcal{H}\left(W_{a}\right)$ has a representation on a one-dimensional \mathcal{A} module $\mathcal{A} \cdot e$ with Π acting trivially and $T_{i} e:=u_{i} e$.
- The algebra $\Pi \cdot \mathcal{H}\left(W_{a}\right)$ is naturally a sub-algebra of the DAHA. The induced representation $\operatorname{Ind}_{\pi \cdot \mathcal{H}\left(W_{a}\right)}^{\mathcal{H}\left(W_{a}, \tilde{X}\right.}(\mathcal{A} \cdot e)$ is called the polynomial representation. By the PBW property, its underlying module is $\mathcal{A} X$, with X acting by left multiplication, Π acting via its action on X, and T_{0}, \ldots, T_{n} acting as the operators

$$
T_{i}=u_{i} s_{i}+\frac{u_{i}-u_{i}^{-1}}{1-x^{\alpha_{i}}}\left(1-s_{i}\right) .
$$

Macdonald polynomials:
definition

The space of polynomials

- Same setup, same notations, but the definition of Macdonald polynomials only depends on the " X side". The " Y side" is used to prove the existence of Macdonald polynomials and study their property.
- We write $\mathbb{Q}(t):=\mathbb{Q}\left(u_{i}, 0 \leq 1 \leq n\right)$, with the convention that $t_{i}=u_{i}^{2}$.
- The group algebra $\mathbb{Q}(t) \tilde{X}$ is a ring of Laurent polynomials over the field $\mathbb{Q}(t)$. We put $q=x^{\delta}$, so that $\mathbb{Q}(t) \tilde{X}=\mathbb{Q}(t)\left[q^{ \pm 1 / m}\right] X$. This lies in $\mathbb{Q}\left(t, q^{ \pm 1 / m}\right) X$, which we write as $\mathbb{Q}(t, q)$ by a small abuse of notation.

An orthogonality kernel

- Let $\mathbb{Q}(q, t) X^{\wedge}$ denote the $\mathbb{Q}(q, t)$-vector space of possibly infinite linear combinations of elements of X. It is a module over $\mathbb{Q}(q, t) X$. For $f \in \mathbb{Q}(q, t) X^{\wedge}$, we write $\left[x^{\lambda}\right] f$ for the coefficient of x^{λ}.
- Let $\overline{(-)}$ be the involution on $\mathbb{Q}(q, t)$ and $\mathbb{Q}(q, t) X$ defined by

$$
\bar{u}_{i}=u_{i}^{-1}, \bar{q}=q^{-1}, \overline{x^{\lambda}}=x^{-\lambda}
$$

Proposition

There exists a unique element $\Delta_{0} \in \mathbb{Q}(q, t) Q_{0}^{\wedge} \subset \mathbb{Q}(q, t) X^{\wedge}$ with $\overline{\Delta_{0}}=\Delta_{0},[1] \Delta_{0}=1$ and for every $0 \leq i \leq n$,

$$
s_{i}\left(\Delta_{0}\right)=\frac{1-t_{i} x^{\alpha_{i}}}{t_{i}-x^{\alpha_{i}}} \Delta_{0} .
$$

The idea is to define an infinite product $\Delta:=\prod_{\alpha \in \tilde{R}^{+}} \frac{1-x^{\alpha}}{1-t_{\alpha} \chi^{\alpha}}$ and to show $\Delta_{0}=\Delta /([1] \Delta)$ works.

Cherednik inner product

- The Cherednik inner product on $\mathbb{Q}(q, t) X$ is defined as

$$
\langle f, g\rangle_{0}:=[1]\left(f \bar{g} \Delta_{0}\right)
$$

It is linear in f and $(-)$-hermitian.

- Over \mathbb{C} and with some assumptions on the parameters, this can be described analytically as integration over the compact torus $T_{u}:=\operatorname{Hom}\left(X, S^{1}\right)$ with respect to a certain meromorphic kernel defined by a similar infinite product.

Macdonald polynomials

There is a natural partial order \leq on X, which on X_{+}is simply given by $\lambda \leq \mu$ iff $\mu-\lambda$ can be written as a sum of positive roots.

Theorem

There is a unique basis $\left(E_{\lambda}\right)_{\lambda \in X}$ of $\mathbb{Q}(q, t) X$, the (non-symmetric) Macdonald polynomials, satisfying

- $\left\langle E_{\lambda}, E_{\nu}\right\rangle_{0}=0$ for $\lambda \neq \nu$.
- $E_{\lambda}=x^{\lambda}+\sum_{\nu<\lambda} c_{\lambda \nu} x^{\nu}$.

Macdonald polynomials: construction using DAHA

DAHA action

- We now use the full initial datum, including the Y side, to introduce the DAHA $\mathcal{H}:=\mathcal{H}\left(W_{e}, \tilde{X}\right)$ with $\mathcal{A}=\mathbb{Q}(t)$.
- We identify $\mathbb{Q}(q, t) X$ with the space of the polynomial representation of \mathcal{H}.

Proposition

Let $0 \leq i \leq n$. The operator T_{i} acting on $\mathbb{Q}(q, t) X$ is unitary with respect to Cherednik's inner product.

By the quadratic relation and the fact that $\bar{u}_{i}=u_{i}^{-1}$, this is equivalent to the fact that $T_{i}-u_{i}$ is self-adjoint, which is a direct computation because of the defining property of Δ_{0} and the equation

$$
T_{i}=u_{i} s_{i}+\frac{u_{i}-u_{i}^{-1}}{1-x^{\alpha_{i}}}\left(1-s_{i}\right)
$$

Cherednik operators

- The new structure afforded by the DAHA action is the action of the elements y^{μ}. The corresponding operators on $\mathbb{Q}(q, t)$ are the Cherednik operators.
- For notation convenience, introduce "formal logarithms" k_{i} for $i \neq 0$ with $q^{k_{i}}=u_{i}$, and extend to the whole of R by the action of W_{0}. Put $\rho^{\prime \vee}=\sum_{\alpha \in R_{+}} k_{\alpha} \alpha^{\prime} \vee\left(\right.$ where $\alpha^{\prime} \in R^{\prime}$ is such that $\left.s_{\alpha}=s_{\alpha^{\prime}}\right)$.

Proposition

The Cherednik operators satisfy

$$
y^{\mu}\left(x^{\lambda}\right)=q^{-(\lambda, \mu)+\left\langle\mu, w_{\lambda}\left(\rho^{\prime} v\right)\right\rangle} x^{\lambda}+\sum_{\nu<\lambda} b_{\lambda \nu} x^{\nu}
$$

with w_{λ} the minimal representative of $x^{\lambda} W_{0}$ in the Bruhat order of W_{e}^{\prime}.
The proof reduces immediately to $\mu \in Y^{+}$, hence $y^{\mu}=T_{y^{\mu}}$, the case $y^{\mu}=s_{i}$ for $0 \leq i \leq n$ is direct, and the general case follows by induction on the length.

End of the proof

- The T_{i} are unitary, and the y^{μ} are composites of T_{i} 's and T_{i}^{-1} 's, so they are unitary as well.
- The y^{μ} 's commute by construction.
- The y^{μ} 's preserve the subspace $\left(\mathbb{Q}(q, t) Q_{0}\right) X$ and act on it as lower triangular operators with distinct eigenvalues.
- All of these properties imply that for a fixed $\lambda \in X$ they admit joint eigenfunctions E_{λ} with eigenvalues $q^{-(\lambda, \mu)+\left\langle\mu, w_{\lambda}\left(\rho^{\prime}\right)\right\rangle}$, normalised with $\left[x^{\lambda}\right] E_{\lambda}=1$, which are mutually orthogonal. These are precisely the Macdonald polynomials.

Intertwiner relations

Intertwiner relations

- The existence of Macdonald polynomials was known before the work of Cherednik, although the DAHA proof is quite elegant. The DAHA approach gives much more, however.
- The general commutation relations

$$
T_{i} x^{\lambda}-x^{s_{i}(\lambda)} T_{i}=\frac{u_{i}-u_{i}^{-1}}{1-x^{\alpha_{i}}}\left(x^{\lambda}-x^{s_{i}(\lambda)}\right.
$$

together with the duality theorem to get similar formulas for the y^{μ} 's can be used to relate Macdonald polynomials for different λ^{\prime} 's. The precise formulas are complicated and I will not reproduce them here. These intertwiner relations are key to proving properties of Macdonald polynomials by "induction on λ ".

Intertwiner relations for GL_{n}

The Macdonald polynomials for GL_{n} are parametrized by $X=\mathbb{Z}^{n}$. The intertwiner relations for GL_{n} are also known as Knop's reccurence. We have $E_{(0, \ldots, 0)}=1$ as base case of the induction, and two other formulas which together determine all the E_{λ} 's:

$$
\begin{gathered}
E_{\left(\lambda_{n}+1, \lambda_{1}, \ldots, \lambda_{n-1}\right)}=q^{\lambda_{n}} x_{1} E_{\lambda}\left(x_{2}, \ldots, x_{n}, x_{1} / q\right) . \\
E_{s_{i}(\lambda)}=\left(u_{i} T_{i}+\frac{1-t}{1-q^{\lambda_{i}-\lambda_{i+1}} t^{\bar{\lambda}_{i}-\bar{\lambda}_{i+1}}}\right) E_{\lambda}
\end{gathered}
$$

with $\left(\bar{\lambda}_{i}\right)$ the permutation of $(1, \ldots, n)$ such that $\bar{\lambda}_{i}>\bar{\lambda}_{j}$ iff $\lambda_{i}>\lambda_{j}$.

Symmetric Macdonald polynomials

- Let $\lambda \in X^{+}$and $V_{\lambda}=\mathbb{Q}(q, t)\left\{E_{\nu}, \nu \in W_{0} \lambda\right\}$. The intertwiner relations imply that V_{λ} is a $\mathcal{H}\left(W_{0}\right)$-submodule of $\mathbb{Q}(q, t) X$. Applying the symmetriser idempotent of that finite Hecke algebra, we see that there is a unique W_{0}-invariant element $P_{\lambda} \in V_{\lambda}$ such that $\left[x^{\lambda}\right] P_{\lambda}=1$, the symmetric Macdonald polynomial.
- The P_{λ} 's are orthogonal wrt Cherednik's inner product, and eigenfunctions of the W_{0}-invariant operators coming from $(\mathbb{Q}(q, t) Y)^{W_{0}}$.
- They can also be characterized using a symmetrisation $\left\rangle^{\prime}\right.$ of Cherednik's inner product, and this is how they were first introduced by Macdonald.
- In the GL_{n}-case, they are symmetric functions which generalise Schur functions, Hall-Littlewood and Jack polynomials...

Norm and evaluation formulas

The intertwiner relations were used by Cherednik to prove formulas for $\left\langle E_{\lambda}, E_{\lambda}\right\rangle$ and on the values of E_{λ}. By symmetrisation, one then gets the original conjectures of Macdonald concerning the P_{λ} 's. For instance, assuming $t=t_{i}=q^{k}$ for some $k \geq 1$, one has

$$
\left\langle P_{\lambda}, P_{\lambda}\right\rangle^{\prime}=\prod_{\alpha \in \tilde{R}^{+}} \prod_{i=1}^{k} \frac{1-q^{2\left(\alpha^{\vee}, \lambda+k \rho+2 i\right)}}{1-q^{2\left(\alpha^{v}, \lambda+k \rho-2 i\right)}} .
$$

