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Introduction

• Singular learning theory (SLT) is an application of singularity theory

to Bayesian statistics developed by Sumio Watanabe.

• Recent applications of singular learning theory to machine learning,

specifically to developmental interpretability of deep neural networks,

due to Daniel Murfet and his collaborators (Liam Carroll, Zhongtian

Chen, Matthew Farrugia-Roberts, Zach Furman, Jesse Hoogland,

Edmund Lau, Jack Mendel, Stan van Wingerden, George Wang,

Susan Wei)
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Key result of singular learning theory

Rough form

The asymptotic performance of parametric statistical models is

controlled by the singularities of a function associated to the model

and the data-generating process.

Precise form

The asymptotic Bayesian generalization performance of

• real-analytic parametric statistical models for i.i.d data is

controlled by

• the real log-canonical threshold of

• the relative entropy between the data-generating distribution

and the model.
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Plan

I: Singularity theory and real log-canonical thresholds

II: Classical Bayesian statistics

III: Statistical learning theory of regular and singular models

IV: SLT from theory to practice

V: Machine learning and Developmental Interpretability
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Singularity theory and real

log-canonical thresholds



Overview

• Real-analytic functions and their singularities

• Two key examples

• Real-log canonical threshold and its geometric interpretations

• More examples

• Wider context in singularity theory
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Set-up

• W ⊆ Rd compact subset with non-empty interior W̊ 6= ∅.
Assume W semi-analytic, i.e. given by real-analytic inequalities.

• F : W → R real-analytic function.

i.e. F restriction of a real-analytic function on an open

neighbourhood of W .

Remarks

• In our applications F ≥ 0 and we concentrate on this case.

• One should be treat carefully what happens at boundary ∂W ; in this

talk we will mostly pretend “W = W̊ ”.

• Important special case: F ∈ R[w1, . . . ,wd ] polynomial. Pros:

* Explicit computations with computer algebra systems.

* Can bring in tools from (real) algebraic geometry

* Can sometimes reduce real-analytic situations to algebraic ones

However statistical applications involve non-polynomial functions!

9



Critical points and singularities

• A point w ∈W is a zero of F if F (w) = 0. We define

W0 := F−1(0) = {w ∈W | F (w) = 0}.

• A point w ∈W is a critical point of F if

∇F (w) = 0 ⇔ ∀i , ∂F

∂wi
(w) = 0.

• A point w ∈W is a singularity of F if it is both a zero and a critical

point.

Example

• Local minima and maxima of F are critical points.

• If F ≥ 0, then every w ∈W0 is a (global) minimum and hence a

singularity of F .
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First key example: sum of squares

Take W = B(0,R) closed ball of radius R and

F (w) = w2
1 + . . .+ w2

d .

Note that F ≥ 0, we have W0 = {0} and F has a unique singularity at 0.

(Vol) Consider the sublevel set:

BF (ε) := {w ∈W | |F (w)| ≤ ε}.

Then in our case BF (ε) = B(0,
√
ε) so Vol BF (ε) = πd

Γ( d
2 +1)

ε
d
2 .

Volume scaling of sublevel sets

Vol BF (ε) ∼
ε→0

C ε
d
2 (for some C > 0)

Moreover, the volume concentrates around W0 as ε→ 0.
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First key example: sum of squares

(Zeta) Define for s ∈ C with Re(s) >> 0 the zeta function:

ζF (s) :=

∫
W

|F (w)|sdw .

In our case we have by integrating over spheres:

ζF (s) =
2πd/2

Γ( d
2 )

∫ R

r=0

r2s+d−1dr

hence

Meromorphic continuation and poles of ζF

• ζF (s) has meromorphic continuation to C with poles in R<0

• the largest pole of ζF (s) is − d
2 and has order 1
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First key example: sum of squares

(Laplace) We have∫
W

e−nF (w)dw ∼
n→∞

∫
Rd

e−nF (w)dw

and ∫
Rd

e−nF (w)dw
Fubini

=

(∫
R
e−nw

2

dw

)d
Gaussian

=

(√
π

n

)d

.

Hence

Asymptotics of Laplace-type integral

ZF (n) :=

∫
W

e−n|F (w)|dw ∼
n→∞

C n−d/2.

Moreover, the integral concentrates around W0 as n→∞.
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Second key example: monomial

Let W = [−1, 1]d . Fix k1, ..., kd ∈ N and let F be the monomial function

F (w) = wk1
1 . . .wkd

d

F ≥ 0 iff all ki are even. We have W0 = [−1, 1]d ∩
⋃d

i=1{wi = 0}.
The singularities of F are all of W0 ⇒ non-isolated singularities.

(Vol) Exercise:

Volume scaling of sublevel sets

Vol BF (ε) ∼
ε→0

C ελ (− log(ε))m−1

with

λ = min
i

{
1

ki

}
and m = #

{
i | 1

ki
= λ

}
.

Moreover, the volume concentrates around the subset

W deg
0 := [−1, 1]d ∩

⋃
1
ki

=λ{wi = 0} ⊆W0 as ε→ 0.

14



Second key example: monomial

(Zeta) We compute the zeta function for a monomial:

ζF (s)
Symmetry

= 2d

∫
[0,1]d

|F (w)|sdw Fubini
= 2d

d∏
i=1

∫ 1

wi=0

|wi |ki sdwi

Each factor converges iff Re(s) > − 1
ki

, and we see easily that

Meromorphic continuation and poles of ζF

• ζF (s) has meromorphic continuation to C with poles in R<0.

• the largest pole of ζF (s) is −λ and has order m.
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Second key example: monomial

(Laplace) Harder exercise:

Asymptotics of Laplace-type integral

When F is a monomial, we have

ZF (n) =

∫
W

e−n|F (w)|dw ∼
n→∞

C n−λ(log(n))m−1.

Moreover, the integral concentrates around the subset

W deg
0 = [−1, 1]d ∩

⋃
1
ki

=λ{wi = 0} ⊆W0 as n→∞.
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Lessons from key examples

For those two real-analytic functions, there are two geometric invariants

λ ∈ Q≥0 and m ∈ N of the singularities in W0 which seem to control

• (Vol) the asymptotic volume of BF (ε) as ε→ 0.

(Image credit: Jesse Hoogland)

• (Zeta) the behaviour of the largest pole of the meromorphic zeta

function ζF (s), (and in particular the integrability of |F |s on W )

• (Laplace) the asymptotic of the Laplace-type integral ZF (n) as

n→∞.
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Real log-canonical threshold

Definition

The real log-canonical threshold (rlct) of F is

rlct(F ) := sup{s ∈ R≥0| |F |−s is integrable} ∈ R≥0 ∪ {∞}.

Alternative terminology: rlct(F ) “critical integrability index”.

Lemma

We have rlct(F ) <∞⇔W0 6= ∅ and if W0 6= ∅, then rlct(F ) ≤ d
2 .

We assume W0 6= ∅ from now on. For our two key examples:

• rlct(w2
1 + . . .+ w2

d ) = d
2 (maximal possible)

• rlct(wk1
1 . . .wkd

d ) = mini

{
1
ki

}
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Equivalent characterizations of rlct

Theorem (Arnold-Gusein-Zade-Varschenko)

Write λ = rlct(F ). There exists m = rlcm(F ) ∈ N (real log-canonical

multiplicity) such that

• (Vol) The volume of sub-level sets of F satisfies

Vol BF (ε) ∼
ε→0

C ελ (− log(ε))m−1

• (Zeta) The zeta function ζF (s) has meromorphic continuation to C
with poles in R<0. The largest pole of ζF (s) is −λ and has order m.

• (Laplace) The Laplace-type integral of F satisfies

ZF (n) =

∫
W

e−n|F (w)|dw ∼
n→∞

C n−λ(log(n))m−1.
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Local rlct and concentration of measure

Definition

Let w ∈W0. The local real log-canonical threshold of F at w is

rlctw (F ) := sup{s ∈ R≥0| |F |−s is locally integrable at w}
= rlct(F|Uw

)

for Uw small enough open neighbourhood of w .

Proposition

• The global rlct is determined by the local ones:

rlct(F ) = min
w∈W0

rlctw (F )

• The integrals (Vol) and (Laplace) concentrate asymptotically

around the subset of “most degenerate” singularities:

W deg
0 := {w ∈W0 | rlctw (F ) = rlct(F )}.
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Examples of concentration of Laplace integrals

(Image credit: S. Watanabe)
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Smooth points and non-degenerate singularities

Smooth points: If w ∈W0 is not a singularity of F , then

rlctw (F ) = 1 and rlcmw (F ) = 1.

Note that since W0 6= ∅ this never happens if F ≥ 0.

Non-degenerate singularities/ Morse singularities:

Assume F ≥ 0 and w0 ∈W0 is such that the Hessian Hessw0 (F ) is

positive-definite (⇒ w0 is an isolated point of W0).

Classical Laplace approximation:∫
Uw0

e−nF (w)dw ∼
n→∞

√
(2π)d

det(Hessw0 (F ))
n−

d
2

hence rlctw0 (F ) = d
2 (maximal possible) and rlcmw0 (F ) = 1.

NB: One of very few cases with a simple formula for the constant C .
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Key geometric input: Hironaka’s resolution of singularities

By a fundamental theorem of Hironaka, there exists a

real-analytic log-resolution of F : a proper real-analytic map π : W̃ →W

from a real-analytic manifold W̃ such that

• π induces a diffeomorphism

W̃ \ π−1(W0)
π→
∼

W \W0.

• Locally on W̃ , the function F ◦ π is monomial:

F ◦ π(w̃) = G (w̃)w̃k1
1 . . . w̃kd

d

with G non-vanishing and ki ∈ N.

• Locally on W̃ , the Jacobian determinant |Jac(π)| is monomial:

|Jac(π)| = G ′(w̃)w̃h1
1 . . . w̃hd

d

with G ′ non-vanishing and ki ∈ N.
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Real log-canonical threshold via resolution

Theorem (Arnold-Gusein-Zade-Varschenko)

(Res) With the notation above, we have

rlct(F ) = min
charts

min
i

{
hi + 1

ki

}
and

rlcm(F ) = max
charts

(
#

{
i | hi + 1

ki
= rlct(F )

})

Corollary

rlct(F ) ∈ Q (!)

Remarks

• When F ∈ R[w1, . . . ,wd ], a resolution can sometimes be computed

explicitly ⇒ formulas for rlct(F ).

• The resolution π is non-canonical while rlct(F ) is independent of the

choice of π. 24



Sketch of proof of theorems

Relevant for us because the main proofs of SLT build on this strategy:

• Fix a resolution π : W̃ →W and define (λ,m) as in (Res).

• By base change formula we have (at least locally, choosing local

coordinates):

ζF (s) =

∫
W̃

|F ◦ π(w̃)|s · |Jac(π)(w̃)|dw̃

• Locally, F ◦ π and |Jac| are monomial. Computation of ζF in

monomial case + partition of unity argument ⇒ (Zeta).

• Structure of poles of ζF (s) + inverse Mellin transform

⇒ asymptotic expansion of the “density of states”/Gelfand-Leray

differential form.

• Integrate the density of states ⇒ (Vol)

• Take Laplace transform of the density of states ⇒ (Laplace). 25



Some more examples

• Morse-Bott singularities: Assume that W0 is a submanifold of

dimension d ′ ≤ d and that Ker(Hessw (F )) = TwW0 for all w ∈W0.

Then

rlct(F ) =
d ′

2
and rlcm(F ) = 1.

• F ∈ R[w1, . . . ,wd ] homogeneous of degree N with an isolated

singularity at 0 and F ≥ 0. Then

rlct(F ) =
d

N
and rlcm(F ) = 1.

• F (x , y) = x2y2(x + y)2. Then

rlct(F ) =
1

3
and rlcm(F ) = 3.

• F (x , y) = x2 − y3. Then

rlct(F ) =
5

6
and rlcm(F ) = 1.
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Wider context in singularity theory

• Parallel invariant in complex-analytic and algebraic geometry, the

log-canonical threshold lct(F ).

• In fact, if F is complex-analytic, we can also consider the associated

real-analytic function |F |2 and then lct(F ) = rlct(|F |2).

• The lct has been intensively studied and is connected to central

topics in singularity theory and birational geometry:

* Canonical singularities (hence the name)

* Multiplier ideals

* D-modules, Bernstein-Sato polynomial and V-filtration

* Spectrum of the monodromy and mixed Hodge structure on

vanishing cycles

* Irreducible components of jet schemes of F

* Poles of motivic and p-adic local zeta functions of F

* Singularities in positive characteristics and Frob-pure threshold.

• Q: Which aspects of this story extend to the rlct? Which are

relevant to statistics?
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Summary of real-log canonical thresholds

• We have associated to a real-analytic function F : W → R two

invariants

rlct(F ) ∈ Q≥0 and rlcm(F ) ∈ N

which control the analytic behaviour of F around W0 = F−1(0):

* Volume scaling of sublevel sets

* Poles of zeta function

* Laplace-type integral (most relevant for SLT)

• These quantities are local, we have

rlct(F ) = min
w∈W0

rlctw (F )

and the integrals in (Vol) and (Laplace) concentrate asymptotically

around the most degenerate singularities W deg
0 of F .
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Classical Bayesian statistics



Overview

Warning: I am not a statistician, so interpret everything from now on as

a noisy sample of some underlying true mathematical facts...

• What is statistics about?

• Set-up

• Regular and singular models

• Bayes comes in: prior and posterior distributions, Partition

function, free energy

• Predictive distribution, Bayesian generalization error
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What is statistics about? What is statistics about in this talk?

• In statistics, we collect/are given data Dn = {x1, . . . , xn} produced

by some unknown, noisy data-generating process.

• We want to infer information about the data-generating process

from Dn.

• To formalize this mathematically, we treat Dn as samples from a

data-generating probability distribution q(x).

• We then try to approximate q(x) by members of a well-chosen

parametric statistical model {p(x |w)}w∈W , i.e. a family of

probability distributions parametrized by w ∈W ⊆ Rd .

• In Bayesian statistics, we also give ourselves a prior distribution

φ(w) on W which reflects our a priori belief in how well p(x |w)

approximates q(x).
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Cast of characters

Bayesian statistical model, fully specified:

• q(x) data-generating distribution

• Dn = {x1, . . . , xn} dataset sampled from q(x)

• {p(x |w) | w ∈W ⊂ Rd} parametric statistical model

• φ(w) prior distribution

(Some) derived quantities:

• Relative entropy K (w) = K (q(x)‖p(x |w))

• Empirical relative entropy Kn(w)

• Posterior distribution p(w |Dn)

• Normalized partition function Z n and normalized free energy F n

• Predictive distribution p(x |Dn)

• Bayesian generalization error Bn = K (q(x)‖p(x |Dn)
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Set-up

• Dataset Dn = {x1, . . . , xn} with each xi ∈ X = RN .

• We assume that the xi are sampled independently from the same

data-generating distribution

q(x) ∈ P(X ) :=

{
p ∈ L1(X ,m) | p ≥ 0,

∫
pdm = 1.

}
• We are given W ⊂ Rd as in the previous section and a parametric

statistical model W → P(X ),w 7→ p(−|w).

Key assumption of SLT

The distribution p(−|w) ∈ P(X ) is real-analytic in w .

(i.e., can be locally written as convergent power series in w with

coefficients in L1(X ,m))

This holds for most statistical/machine learning models.

32



Regression models / Supervised learning

• Suppose our data consists of pairs (xi , yi ) ∈ X × Y = RN × RM and

we expect a functional relationship

yi = f (xi ) + Gaussian noise .

Assume moreover that we have many other examples of xj (without

the corresponding yj) and we want to predict yj given xj .

• We interpret this as q(x , y) = q(y |x)p(x) distribution on X ×Y with

p(x) known empirically (from the inputs of our regression) and:

q(y |x) ∝ exp

(
−‖y − f (x)‖2

σ2

)
for an unknown function f : X → Y . We then put

p(y |x ,w) := p(y |x ,w)p(x)

with

p(y |x ,w) ∝ exp

(
−‖y − fw (x)‖2

σ2

)
for some parametrized real-analytic function fw : W × X → Y .
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Example: neural networks as regression models

• The function fw : W × RN → RM in regression models can be as

simple or as complicated as appropriate for the statistical problem at

hand. A classical choice is linear regression where each map fw is

affine and W ⊆ MatM,N(R)× RM .

• Popular choice these days: fw function computed by a neural

network with weights w ∈W . We describe the simplest

architecture: feed-forward fully connected networks (or multi-layer

perceptrons) with no biases.

• Fix a depth L and dimensions N1 = N, N2, . . . , NL+1 = M. Fix an

activation function α : R→ R. We put W =
∏L

i=1 MatNi ,Ni+1 (R).

For w = (A1, . . . ,AL), we define

fw (x) := AL · α(AL−1 · α(. . .A1 · x) . . .)

where α is applied to a vector coordinate-wise.
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Relative entropy

We want to measure the “distance” between our model and the

data-generating distribution. We use an information-theoretic notion

whose statistical meaning will become clear later:

Definition

Let p(x), p′(x) ∈ P(X ) with same support. Their relative entropy (or

Kullback-Leibler divergence) is

K (p′(x)‖p(x)) :=

∫
X

p′(x)log
p′(x)

p(x)
dx ∈ R ∪ {∞}.

Warning: K (−‖−) is not symmetric in p and p′ and does not satisfy a

triangle inequality.

Lemma (Gibbs’ inequality (corollary of Jensen))

We have K (p′‖p) ≥ 0 and K (p′‖p) = 0⇔ p
a.e.
= p′.
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Relative entropy

From now on we assume q(x) and p(x |w) have the same support (e.g.

all of X ) for every w ∈W and define our main player, the

relative entropy between the model and the true distribution:

K (w) := K (q(x)‖p(x |w)) =

∫
X

q(x) log
q(x)

p(x |w)
dx .

Under mild convergence assumptions:

p(−|w) real-analytic on W⇒ K (w) real-analytic on W.

Example

For a regression model as above,

K (w) =
1

2

∫
RN

‖f (x)− fw (x)‖2p(x)dx =
1

2
‖f − fw‖2

L2(RN ,RM ,p(x))

measures the mean square error between fw and f .
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Empirical relative entropy

So far we have not used our dataset Dn at all!

Definition

The empirical relative entropy Kn(w) is defined as

Kn(w) :=
1

n

n∑
i=1

log(q(xi )/p(xi |w)).

Kn(w) measures “how unlikely it is that Dn was sampled from p(x |w)

instead of the true distribution q(x).”

Lemma

• We have Eq[Kn(w)] = K (w).

• (Law of large numbers) Given w ∈W , we have Kn(w) →
n→∞

K (w).

Key idea of Watanabe: use geometry and singularity theory to control

the fluctuations of Kn around its expectation K .
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Realizable and unrealizable models

Definition

A pair (q(x), p(x |w)) is realizable if there exists w ∈W such that

q(x)
a.e
= p(x |w) and unrealizable otherwise.

Define

W0 = K−1(0) = {w ∈W | q(x)
a.e
= p(x |w)}

so that (q(x), p(x |w)) is realizable if and only if W0 6= ∅.

Realizability

For simplicity, in the rest of the talk, we assume W0 6= ∅.

SLT for unrealizable models will have to wait for tomorrow.
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Regular and singular models

Definition

A (realizable) pair (q(x), p(x |w)) is a regular model if

• W0 = {w0} consists of a single point

• Hessw0 (K ) is positive definite

In other words, K admits a unique non-degenerate singularity.

A model which is not regular is called singular.

Example

Any model which admits (discrete or continuous) symmetries is

singular. Modern machine learning models like neural networks are

almost always singular.
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Prior and posterior distributions

• Up until now, nothing particularly “Bayesian” about this story.

• In Bayesian statistics, we start with a prior distribution

φ(w) ∈ P(W ) encoding our initial belief about the accuracy of the

model for different parameters w .

• We then want to find the posterior distribution p(w |Dn) of our

“updated belief after seeing the data”. By Bayes rule:

p(w |Dn)
Bayes

=
p(Dn|w)φ(w)

p(Dn)

Dn i.i.d
=

(∏n
i=1 p(xi |w)

)
φ(w)∫

W

(∏n
i=1 p(xi |w)

)
φ(w)dw
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Normalized partition function and free energy

Definition

The normalized partition function (or normalized marginal likelihood) is

Z n =

∫
W

φ(w)
n∏

i=1

p(xi |w)

q(xi )
dw =

∫
W

exp(−nKn(w))φ(w)dw

The normalized free energy is

F n = − logZ n.

We can rewrite the posterior distribution in terms of Z n as

p(w |Dn) =
1

Z n

exp(−nKn(w))φ(w)

The role of Laplace-type integrals is finally becoming apparent! (the

factor φ(w) does not change asymptotics as long as φ|W0
> 0)
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Statistical interpretation of F n

Write

q(Dn) =
n∏

i=1

q(xi )

and

p(Dn) =

∫
W

φ(w)
n∏

i=1

p(xi |w)dw .

Both expressions define probability distributions q(Dn), p(Dn) ∈ P(X n)

on the product space X n of datasets.

Lemma

Eq[F n] = K (q(Dn)‖p(Dn)).

In other words, in expectation, F n measures how much the distribution of

possible datasets Dn predicted by averaging over the model differs from

the true distribution of Dn according to q.
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Predictive distribution and generalization error

In the Bayesian framework, we use the posterior distribution to make

predictions by averaging over the model.

Definition

The predictive distribution p(x |Dn) ∈ P(X ) is defined as

p(x |Dn) :=

∫
W

p(x |w)p(w |Dn)dw =
1

Z n

∫
W

p(x |w)exp(−nKn(w))φ(w)dw

I.e. “we believe that a new datapoint xn+1 ∼ q(x) will come up with

probability p(xn+1|Dn)”.

How accurate is this procedure? Again we turn to relative entropy:

Definition

The Bayesian generalization error Bn is the relative entropy

Bn := K (q(x)‖p(x |Dn))

between data-generating and predictive distributions. 43



Normalized free energy vs Bayesian generalization

F n and Bn are both measures of the quality of the model, but measure

slightly different things. They are connected by

Lemma (Bn “discrete derivative” of F n on average)

Eq[Bn] = Eq[F n+1]− Eq[F n].

Both measures can be used for Bayesian model selection, i.e. comparing

two different models on the same data.
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Summary of Bayesian statistics

Full statistical model:

• q(x) data-generating distribution

• Dn = {x1, . . . , xn} dataset sampled from q(x)

• {p(x |w) | w ∈W } parametric statistical model

• φ(w) prior distribution

Derived quantities:

• Relative entropy K (w) = K (q(x)‖p(x |w))

• Empirical relative entropy Kn(w)

• Posterior distribution p(w |Dn) = 1
Z n

exp(−nKn(w))φ(w)dw

• Normalized partition function Z n =
∫
W

exp(−nKn(w))φ(w)dw and

free energy F n = − log(Z n)

• Predictive distribution p(x |Dn) =
∫
W

p(x |w)p(w |Dn)dw

• Bayesian generalization error Bn = K (q(x)‖p(x |Dn))
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Statistical learning theory of

regular and singular models



Overview

• Stastical learning theory

• Posterior concentration

• Regular models

• Singular learning theory
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Statistical learning theory

Heuristically, we expect as the number n of data samples goes to ∞:

• The model will predict better and better.

⇒ Bn will decrease.

• The model will become more confident.

⇒ p(w |Dn) will concentrate around W0.

⇒ Asymptotic behaviour of Z n and F n

The two phenomena are connected by

Eq[Bn] = Eq[F n+1]− Eq[F n].

The goal of (Bayesian) statistical learning theory is to quantify this.

47



Posterior consistency and large deviations principle

Beautiful (and classical) connection between Bayesian statistics and

information theory which clarifies the statistical role of K .

Theorem

(Under mild technical assumptions, doesn’t require analytic)

The posterior distribution p(w |Dn) concentrates exponentially quickly

in n with rate function the relative entropy K (w): for any measurable

U ⊂W , we have very roughly:∫
U

p(w |Dn)dw ≈ C exp(−nmin
u∈U

K (u))

or more precisely (but still slightly inaccurately):

−1

n
log

∫
U

p(w |Dn)dw →
n→∞

min
u∈U

K (u).

Q: Can we refine the asymptotic around W0?
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Statistical learning theory of regular models

Theorem

(Under mild technical assumptions, doesn’t require analytic)

Assume that (q(x), p(x |w)) is regular with W0 = {w0} and φ(w0) > 0.

• Free energy formula:

Eq[F n] =
n→∞

d

2
log(n)− log(C ) + o(1)

with

C =
(2π)

d
2 exp( d

2 )φ(w0)√
det(Hessw0 (K ))

• Asymptotic Bayesian generalization:

Eq[Bn] =
n→∞

d

2n
+ o(1/n).
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Asymptotic theory of regular models

More precise result about the concentration of the posterior distribution

itself:

Theorem (Bernstein-Von Mises)

(Under some technical assumptions) Assume that (q(x), p(x |w)) is

regular with W0 = {w0}. Then the posterior distribution p(w |Dn) is

asymptotically normal around the maximum likelihood estimator:

If we fix for each n any minimum w∗n of Kn(w) (MLE), then for any

measurable U ⊆W , we have∫
U

|p(w |Dn)−N (w∗n , n
−1Hessw0 (K )−1)|dw →

n→∞
0.

with N (w∗, I ) the normal distribution on Rd with mean w∗ and

covariance matrix I .
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Singular learning theory

Theorem (Watanabe)

(Under some technical assumptions) Assume that (q(x), p(x |w)) is a

realizable real-analytic model and that φ|W0
> 0. Write

λ = rlct(K ) and m = rlcm(K ). Then the posterior distribution

concentrates around W deg
0 and:

• Free energy formula:

Eq[F n] =
n→∞

λ log n − (m − 1) log log n + O(1)

• Asymptotic Bayesian generalization:

Eq[Bn] =
n→∞

λ

n
+ o(1/n).

Watanabe also describes the constant C and the asymptotic shape of the

posterior distribution but it is much more complicated to state than in

the regular case (no asymptotic normality!) and depends on a resolution.
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Sketch of proof of Watanabe’s theorem

• Fix a log-resolution π : W̃ →W . Using a fancy functional version of

the central limit theorem (empirical process theory), Watanabe

shows that

ξn(w̃) :=
1√
n

K (π(w̃))− Kn(π(w̃))√
K (π(w̃))

is well-defined and converges when n→∞ to a Gaussian process

ξ(w̃) on w̃ (small lie here). We thus have

Kn(π(w̃)) = K (π(w̃))− 1√
n

√
K (π(w̃))ξn(w̃)

with some probabilistic control over the fluctuations ξn as n→∞.

• Then Watanabe plugs this formula into the proof by

Arnold-Gusein-Zade-Varschenko of asymptotics of Laplace integrals

(zeta function, inverse Mellin transform, density of states...), with a

lot of additional work to deal with the fluctuations.
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First statistical consequences

Eg [Bn] =
λ

n
+ o(

1

n
) with λ = rlct(K )

• Precise formulation of the slogan we started the talk with.

Watanabe also calls λ the learning coefficient of the model.

• By comparing with the regular case, one way we can think about λ

is as (half) an effective parameter count/complexity measure.

• Since λ ≤ d
2 , singular models generalize better!

• In the regular case Eg [Bn] = d
2n + o( 1

n )

⇒ Regular models with more parameters generalize worse.

⇒ Overparametrization hurts generalization.

• This is not (necessarily) true for singular models! Important because

empirically overparametrized ML models can generalize very well.
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Summary of statistical learning theory

• The Bayesian posterior distribution of a (realizable) model “always”

concentrates around W0 exponentially fast with rate given by the

relative entropy K (w) = K (q(x)‖p(x |w)).

• For regular models, the posterior is asymptotically normal around

the unique minimum and we have

Eq[Bn] =
n→∞

d

2n
+ o(

1

n
).

and

Eq[F n] =
n→∞

d

2
log n − log(C ) + o(1)

• For general singular models, the posterior concentrates around the

most degenerate singularities W deg
0 and we have

Eq[Bn] =
n→∞

λ

n
+ o(1/n).

and

Eq[F n] =
n→∞

λ log n − (m − 1) log log n + O(1).
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SLT from theory to practice



Applications of SLT in Bayesian statistics

In the Bayesian context, SLT has been applied and extended by

Watanabe and his collaborators and students in many directions:

• Other more practical asymptotic results in statistical learning theory

(e.g. maximum likelihood estimation, Gibbs error, cross-validation

error)

• Information criteria and Bayesian model selection

• Analysis of certain MCMC algorithms

• . . .

See [Watanabe09], [Watanabe18], [Watanabe survey] and the many

references therein. I will mention a few of these works later but there are

many more!
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A few more definitions

In our theoretical analysis we used liberally the data-generating

distribution q(x). Since we do not have access to it in practice (that’s

the whole point!), we also need to study unnormalized quantities which

only depend on the known: data, model, prior.

• The negative log-likelihood Ln(w) is

Ln(w) = −1

n

n∑
i=1

log p(xi |w).

• The partition function Zn is

Zn =

∫
W

φ(w)
n∏

i=1

p(xi |w)dw =

∫
W

exp(−nLn(w))φ(w)dw

• the free energy Fn is

Fn = − log(Zn)
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Free energy formula, final version

Watanabe’s approach actually provides an asymptotic formula for the

random variable Fn and not just its expectation:

Theorem (Watanabe)

(Under some technical assumptions) Assume that (q(x), p(x |w)) is a

realizable real-analytic model and that φ|W0
> 0. Let w0 ∈W0. Write

λ = rlct(K ) and m = rlcm(K ).

Fn =
n→∞

nLn(w0) + λ log n − (m − 1) log log n + Op(1).

Statistical intrepretation

Model selection by minimizing the free energy Fn involves trade-off

between

• Model accuracy on the data nLn(w0)

• Model complexity/degeneracy λ
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SLT for unrealizable models

• Assume that (q(x), p(x |w)) is not realizable. We do the simplest

possible correction and just shift the function to take the value 0:

K (w) := K (q(x)‖p(x |w))−min
v

K (q(x)‖p(x |v))

and try to proceed as in the realizable case.

• The asymptotic formulas for the free energy and the generalization

error do not hold in general! ⇒ we need additional assumptions.

• Watanabe shows in [Watanabe18] how to extend SLT under the

assumption of relatively finite variance, which I won’t discuss here.

• [Nagayasu-Watanabe] explores SLT beyond relatively finite variance;

still a lot to do!

58



Non-analytic models

• Q: SLT as stated above applies to real-analytic models; what

happens beyond this?

• Non-analytic models come up in practice in (at least) two important

ways: neural networks with non-analytic activation functions such as

rectified linear units (ReLU), and mixture models.

• By definition αReLU(x) := max(x , 0) so ReLU neural networks

parametrize piecewise linear functions (!) and their relative entropy

function K is only piecewise analytic.

• Expensive potential solution: redevelop the whole theory in the

context of sub-analytic geometry. Technically daunting, but the

basic ingredients seem to be available?

• Practical solution: table the issue and pretend everything is (close

enough to) real-analytic; seems to work well empirically!
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Asymptotic versus finite n

• Q: SLT gives asymptotic formulas; what information do we get for

practical dataset sizes n?

• Common issue in mathematical statistics! Modern trend seems for

this reason to lean towards non-asymptotic results and techniques.

• SLT corrects the finite n behaviour of the classical theory: if you

take a regular model which is “close to a singular model” and apply

the regular asymptotic theory, the results are only meaningful for

very large n, while SLT applied to the nearby singular model gives

meaningful results for much smaller n (cf. [Watanabe18, §1.5] for

examples and further discussion)

• Theoretical solution: Watanabe’s proofs actually produce bounds

for every n. As far as I know they haven’t been applied so far.

• Empirical solution: Evaluate SLT’s claims on small models and

show that they work for reasonable n. (cf. [TMS] for a thourough

examples).
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What can we compute? Learning coefficient

• Thanks to Watanabe and his collaborators, the learning coefficient

λ = rlct(K ) is known in a number of “simple” cases:

* Various mixture models (normal, Poisson, multinomial...)

* Hidden Markov models

* latent Dirichlet allocation

* Deep linear networks (tour de force by M. Aoyagi [Aoyagi-DLN])

* . . .

• Fundamental observation: λ depends on the (unknown)

data-generating distribution q(x)!

• From a theoretical point of view this is a feature: the same model

generalizes differently for different q(x), and SLT tells us how.

• From a practical point of view, this means that we can almost never

know the exact value of λ.
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What can we compute? Free energy and posterior sampling

• In Bayesian statistics, Fn (or Zn) is known to be difficult to estimate.

• Unfortunate, because we only know the posterior distribution up to

the partition function:

p(w |Dn) =
1

Zn
exp(−nLn(w))φ(w)

• Markov Chain Monte Carlo (MCMC) algorithms construct

approximate samples from a probability distribution which is only

known up to a constant.

⇒ we can sample from the posterior distribution.

⇒ MCMC workhorse of pratical Bayesian inference.

• MCMC does not scale up well to very large models. Various

approximations are used, e.g. Stochastic gradient Langevin

dynamics (SGLD). No time to discuss here, but fundamental to

applications below.
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Widely applicable Bayesian information criterion

Can we use MCMC/SGLD sampling to define a computationally tractable

estimator of Fn? Watanabe [WBIC] to the rescue!

Definition

WBICn := E
1

log(n)
w [nLn(w)]

where the notation Eβw indicates expectation with respect to the

tempered Bayesian posterior at inverse temperature β > 0:

pβ(w |Dn) =

∏n
i=1 p(xi |w)βφ(w)∫

W

∏n
i=1 p(xi |w)βφ(w)dw

• Samples from the tempered posterior distribution can also be

obtained by MCMC/SGLD sampling. Samples can be used to

estimate expectations ⇒ WBICn is computationally tractable.

• The terminology “Bayesian Information criterion” comes from

context of model selection.
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Estimating the free energy and the rlct via WBIC

Theorem (Watanabe )

Under technical assumptions + relative finite variance

Fn = WBICn + Op(
√

log n)

and hence by combining with the free energy formula

WBICn = nLn(w0) + λ log n + Op(
√

log n).

Corollary

λ̂ :=
WBICn − nLn(w∗n )

log n

(with ŵ∗n argmin of Ln over samples) is an estimator of the learning

coefficient λ.

We can estimate real log-canonical thresholds from data! but not rlcm ;-(
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Local Bayesian statistics

• We cannot directly apply the tools of SLT, even with WBIC, to a

large model such as a deep neural network with millions of

parameters; computationally intractable!

• Moreover, it is not even clear that we really want to do this, since in

deep learning we want to understand the training process of

optimization algorithms such as stochastic gradient descent which

only explore a very small part of W .

• Solution: apply SLT to the models obtained by “localizing” the

large model to small parts of W !

• Interesting story of free energy minimization and phase transitions in

the Bayesian posterior which I have to omit (see [TMS])
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Local learning coefficient estimator

In [LLC] these ideas are synthesized into

Definition (Lau,Murfet,Wei)

• The tempered local posterior pβ(w |Dn,w
∗, γ) at w∗ ∈W with

confinement strength γ > 0 and inverse temperature β is

pβ(w |Dn,w
∗, γ) ∝ exp(−γ

2
‖w − w∗‖2) exp(−nβLn(w))φ(w)

(multiplying the tempered posterior with a confining Gaussian prior)

• The local learning coefficient estimator λ̂(w∗) is

λ̂(w∗) =
E

1
log(n)

w |w∗,γ(nLn(w))− nLn(ŵ∗n )

log n

with the expectation taken with respect to the local tempered

posterior pβ(w |Dn,w
∗, γ) and ŵ∗n argmin of Ln(w) over samples.
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LLC estimation and local rlcts

• The confinement Gaussian prior ensures that the local posterior is

tightly concentrated around w∗; tuning its value is important for

numerical stability but does not affect (too much) the results.

• In a large model, sampling from the local (tempered) posterior

distribution is much much easier than sampling from the full

posterior distribution! We only need to sample the neighbourhood of

w∗ ∈W , which is computationally tractable (especially with SGLD).

• When w∗ ∈W0, Watanbe’s WBIC theorem implies that λ̂(w∗) is an

estimator of the local real log-canonical threshold rlctw∗(K ) from

data!

• Mystery: λ̂(w∗) “behaves well” away from W0, and seems to give a

consistent local complexity measure everywhere!

• Q: What is λ̂(w∗) measuring geometrically in general?
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Also... it works!

• For deep linear networks, we know the true value of λ by the

theorem of M. Aoyagi [Aoyagi-DLN].

• In [LLC-scale], Z. Furman and E. Lau compared λ̂(w∗) for w∗ ∈W0

with this theoretical baseline:
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Machine learning and

Developmental interpretability



Maximum likelihood estimation

• Note that we have Kn(w) = Ln(w)− Sn with

Sn = −1

n

n∑
i=1

log(q(xi ))

empirical entropy of the data independent of w , hence

• Minimizing Kn(w) ⇔ minimizing Ln(w), i.e. maximum likelihood

estimation (MLE).

• For a regression model with dataset Dn = {(xi , yi )}ni=1, we have

Ln(w) =
1

n

n∑
i=1

‖yi − fw (xi )‖2 + cst

hence MLE ⇔ minimizing mean square error loss function.
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Stochastic gradient descent

• In machine learning (esp. deep learning), minimizing the loss

function is typically done by stochastic first order optimization

algorithms like stochastic gradient descent (SGD).

• Stochastic gradient descent noisy, discretized gradient flow:

* Initialize your model at some w(0) ∈W .

* Compute the gradient ~v(0) at w(0) of minibatch loss function
1
b

∑
i∈B‖yi − fw (xi )‖2 for a random minibatch B ⊂ Dn of fixed size b.

* Set w(1) := w(0) + η~v (0) (with η fixed step-size and repeat (until...?)
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Developmental Interpretability

• Goal: understanding the development of computational stucture

during the training (by SGD) of a neural network, by tracking the

changes in the local geometry/singularity theory of the loss function.

• The local learning coefficient estimator λ̂ is a first tool for that

purpose.

• Papers [TMS] (“toy model”, very well understood from SLT picture)

[ICL] (language model, towards more realistic applications)
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