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Our topic for these two talks

• Macdonald polynomials are families of polynomials attached to root

systems, orthogonal with respect to a measure on a torus, which

come in a symmetric and a non-symmetric version, and whose

structure can be elucidated by studying certain Hecke algebras.

• Wait, this sounds familiar... didn’t we just study

Jacobi(-Heckman-Opdam) polynomials?

• Difference: the orthogonality measure is “q-deformed”. Some

consequences:

• Commuting differential operators are replaced by commuting

q-difference operators.

• Affine Hecke algebras (in various guises) are replaced by Double

Affine Hecke Algebras (DAHAs).

• Links with q-calculus and with quantum groups.

• Mysterious symmetries given by Cherednik’s difference Fourier

transform, extending to an action of (congruence subgroups of)

PSL2(Z).
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What about Koornwinder?

• Macdonald polynomials and DAHAs for non-reduced root systems

have been studied by Koornwinder (among others).

• In particular, the case (C1,C
∨
1 ) recovers the Askey-Wilson

orthogonal polynomials.

• The Lie-theoretic data underlying Macdonald polynomials, especially

for non-reduced root systems, are quite subtle; I will only treat a

simple case.
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Overview of the first talk: Hecke algebras

• Lie-theoretic data

• Coxeter groups and Weil groups

• Braid groups and Hecke algebras

• Affine Hecke algebras

• Double Affine Hecke algebras
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Lie-theoretic data



Root systems and root data

Definition

A root system is a f.d. Q-vector space V and a finite spanning set

R ⊂ V such that for all a ∈ R, there is a∨ in the Q-linear dual V ∗ with

• a∨(R) ⊂ Z and (a, a∨) = 2

• sa(R) ⊂ R with sa(v) := v − (v , a∨)a.

A root datum is a quadruple (X ,R,X∨,R∨) with X a free abelian

group of finite rank, X∨ its linear dual and R ⊂ X , R∨ ⊂ X∨ finite sets

such that there exists a bijection a 7→ a∨ satisfying

• For all a ∈ R, (a, a∨) = 2.

• For all a ∈ R, if we define sa ∈ End(X ) and sa∨ ∈ End(X∨) by

sa(x) := x − (x , a∨)a and sa∨(λ) := λ− (a, λ)a∨

then sa(R) = R and sa∨(R∨) = R∨.
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First remarks

• If (X ,R,X∨,R∨) is a root datum, then (V ,R) (resp. (V∨,R∨)),

where V is the span of R in XQ (resp. of R∨ in X∨Q ) are (dual) root

systems.

• We say that (X ,R,X∨,R∨) is:

• semisimple if R spans XQ (equivalently R∨ spans X∨Q ).

• semisimple and adjoint if R spans X .

• semisimple and simply connected if R∨ spans X∨.

• All the classical notions associated to root systems extend naturally

to root data: reduced vs unreduced, simple/positive roots, Weyl

groups...

• The definition is symmetrical: (X∨,R∨,X ,R) is also a root datum,

the Langlands dual root datum (this is the main reason to include

X∨ in the notation; some authors omit it altogether).
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An abundance of lattices

Given a root datum (X ,R,X∨,R∨), we have

• The root lattice Q := ZR.

• The weight lattice P := {x ∈ XQ|∀a∨ ∈ R∨, (x , a∨) ∈ Z}.
• The coroot lattice Q∨ := ZR∨.

• The coweight lattice P∨ := {λ ∈ X∨Q |∀a ∈ R, (a, λ) ∈ Z}.

We have

Q ⊂ X ⊂ P and Q∨ ⊂ X∨ ⊂ P∨.

A semisimple root datum is simplyconnected if X = Q and adjoint if

X = P.

Conversely, if (V ,R) is a root system, then it is possible to define P,Q

and then construct the corresponding finitely many semisimple root data

choosing a lattice Q ⊂ X ⊂ P.
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Minuscule weights and coweights; the group Ω

Let (X ,R,X∨,R∨) be a root datum, and fix a decomposition

R = R+ ⊂ R− into positive and negative roots. This determines cones

Q+ ⊂ Q,X+ ⊂ X ,P+ ⊂ P, . . ..

• A weight λ ∈ P+ is called minuscule if it satisfies 0 ≤ (λ, α∨) ≤ 1

for all α∨ ∈ R∨.

• (Semisimple case): a weight λ ∈ P is fundamental if it is dual to a

coroot α∨i : (λ, α∨j ) = δij . Minuscule weights are fundamental, but

not conversely in general.

• Minuscule weights form a canonical choice of representatives of

P/Q, and this gives them a structure of abelian group (finite in

semisimple case); in particular, for An, every fundamental weight is

minuscule. The group Ω = P/Q plays an important role in the

theory of (double) affine Hecke algebras. In type An, Ω ' Z/nZ.
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Root data, compact groups, reductive groups

• One of the main functions of root systems is to classify semisimple

complex Lie algebras, or equivalently semisimple compact real Lie

algebras. Root data allows to lift this to the group level.

• Let K be a connected compact Lie group and T ⊂ K a maximal

torus. Let X (T ) = Hom(T ,U(1)) (resp. X∨(T ) = Hom(U(1),T ))

be the character (resp. cocharacter) lattice of T . Let R(G ,T )

(resp. R∨(G ,T )) be the set of roots (resp. coroots). Then

(X (T ),R(G ,T ),X∨(T ),R∨(G ,T ))

is a (reduced) root datum.

Theorem

This sets up a bijection between isomorphism classes of connected

compact Lie groups and reduced root data. Moreover, isomorphisms

and (central) isogenies between connected compact Lie groups can be

read off the root data. The same statements hold for connected split

reductive groups over arbitrary fields.
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Some examples in type A

• Gn
m: (Zn, ∅,Zn, ∅)

• SL2: (Z, {±2},Z, {±1}).

• PGL2: (Z, {±1},Z, {±2}).

• GLn: (Zn, {ei − ej |1 ≤ i 6= j ≤ n},Zn, {ei − ej |1 ≤ i 6= j ≤ n})
• SLn:

(Zn/
∑
i

ei , {ēi−ēj |1 ≤ i 6= j ≤ n}, sum−1(0), {ei−ej |1 ≤ i 6= j ≤ n}).

• PGLn:

(sum−1(0), {ei−ej |1 ≤ i 6= j ≤ n},Zn/
∑
i

ei , {ēi−ēj |1 ≤ i 6= j ≤ n}).
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Double root data/Initial data

• The initial datum necessary to develop the theory of double affine

Hecke algebras and Macdonald-Koornwinder polynomials in full

generality is two root data whose corresponding root systems are

either equal (untwisted case) or dual to each other (twisted case),

and where that identification at that level of root systems is

extended in a natural way to the root datum level.

• In the Askey-Bateman volume, this is encoded by a notion of initial

datum; similar concepts are used by Macdonald, Haiman, Ion-Sahi in

other papers.

• Much too general for an introductory talk! We will only consider the

untwisted, adjoint simply connected case attached to an irreducible

root system R of some Dynkin type A-G. This corresponds to

restricting to a large and interesting class of affine root systems.

• This excludes the case of Koornwinder polynomials ;-(.
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Braid groups and Hecke algebras



Coxeter groups

• A Coxeter group (W ,S) is a group generated by S = {si |i ∈ I} with

the relations (si sj)
m(i,j) = 1 for some matrix m(i , j) with m(i , i) = 1

and m(i , j) ≥ 2 for i 6= j .

• An alternative presentation is given by the quadratic relations s2i = 1

and, for i 6= j , the braid relations

si sjsi . . . = sjsi sj . . .

with m(i , j) factors on each side.

• Any Coxeter group admits a faithful real representation in which the

si ’s act by reflections. Moreover, any finite reflection group is a

Coxeter group for some choice of S .

• Weyl groups of root data are Coxeter groups. Conversely, irreducible

finite Coxeter groups are either Weyl groups, dihedral groups, or the

symmetry groups H3 and H4 of the icosahedron and the 120-cell.

• Besides finite Weyl groups, we are interested in affine Weyl groups.
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Braid groups

Let W = (W ,S) be a Coxeter group.

• Any two reduced expressions of w ∈W , i.e. of minimal length l(w),

in terms of the si ’s are connected by the braid relations

(Matsumoto’s theorem).

• The braid group BW is generated by S together with the braid

relations. By construction there is a surjection BW � W .

• By Matsumoto, one can define a lift Tw ∈ Bw of any w ∈W . These

generate BW with the relations TwTw ′ = Tww ′ when

l(ww ′) = l(w) + l(w ′).

• When W = Sn Weyl group of type An−1, BW is the classical braid

group, i.e. the fundamental group of the configuration space of n

(unordered, distinct) points in C.

• More generally, for W a finite Weyl group with h ⊂ g a Cartan

subalgebra of the corresponding semisimple complex Lie algebra, we

have BW ' π1(hreg/W ) with hreg the regular elements.
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Hecke algebras

Let (W ,S) be a Coxeter group. Let R be a base ring (in practice often

R = C). Fix formal variables qs for s ∈ S , with qs = qws for all w ∈W .

We can also take one qs = q (automatic when there is one root length).

• The (Iwahori-)Hecke algebra H(W ,S) over R is the quotient of the

group algebra R[qs , q
−1
s ][BW ] by Hecke relations (or q-deformed

quadratic relations):

(Ts − qs)(Ts + q−1s ) = 0.

or alternatively

Ts − T−1s = qs − q−1s

• We can also specialize qs to fixed invertible elements in R. For

qs = 1, we recover the group algebra R[W ] of the Coxeter group.

• This is a flat deformation of R[qs , q
−1
s ][W ]; for R = C and fixed q

this just means that the elements Tw for w ∈W form a basis of

H(W ,S) as a vector space.
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Finite Hecke algebras

• When W is a (finite) Weyl group, H(W ) is called a (finite) Hecke

algebra. It is then a finite dimensional deformation of the group

algebra R[W ].

• H(W ) with fixed q ∈ C× has a quite simple representation theory;

for all but finitely many q’s, it is the same as the one of W .

• Finite Hecke algebras occur naturally in the study of reductive

groups over finite fields and their representations: if G is a split

reductive group over Fq and B a Borel subgroup, then after

specialising to qs = q, H(W ) is isomorphic to the algebra of

B-biinvariant functions G → C equipped with its natural

convolution product (follows from Bruhat decomposition).

• Finite Hecke algebras also appear in quantum groups, knot theory,

combinatorics,...
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Affine Hecke algebras



Affine root systems and affine Weyl groups

• As warned, we only consider a somewhat special class of affine root

systems. Let (P,R,P∨,R∨) be an irreducible semisimple adjoint

root datum.

• Let V = PR. We have affine hyperplanes:

Hα,n = {x ∈ V |(x , α∨) = n}.

The reflections along those hyperplanes form the affine Weyl group

W a; we have W ⊂W a, and in fact W a ' Q oW .

• Fix a set of simple roots S ⊂ R, so that (W ,S) is a Coxeter group.

Let θ ∈ R+ be the corresponding highest root, and s0 = sHθ,1 . Then

(W a, s0 ∪ S) is a Coxeter group.

• Let W ae := P∨ oW be the extended affine Weyl group. Then

W ae 'W a o Ω with Ω = P∨/Q∨. W ae is not Coxeter, but one can

extend the length function of W a to it so that Ω = l−1(0).
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Extended affine braid group: definition

• The affine braid group Ba
W := BW a also has a variant taking into

account the larger, non-Coxeter group W ae .

• The extended affine braid group Bae
W is generated by {Tw |w ∈W ae}

with the relations TwTw ′ = Tww ′ when l(ww ′) = l(w) + l(w ′) (with

the extended length function).

• The elements {Tw |w ∈ Ω} form a subgroup isomorphic to Ω, and

we have

Bae
W = Ba

W o Ω.
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Extended affine braid group: Bernstein presentation

Choose a decomposition R = R+ ∪ R−, which gives rise to a set of

simple roots S = {α1, . . . , αn}.

• For λ ∈ P, one can introduce Y λ ∈ Bae
W by:

• Y λ := Tλ for λ ∈ P+

• Y λ := Tµ(Tν)−1 for any equality λ = µ− ν with µ, ν ∈ P+.

and check that this is well-defined.

• This produces a subgroup Y P := {Y λ|λ ∈ P} ⊂ Bae
W isomorphic to

P.

• A key point in the whole story is the Bernstein presentation of Bae
W :

the group Bae
W is generated by Y P and T1, . . . ,Tn with relations:

• If (λ, α∨i ) = 0, then Y λTi = TiY
λ.

• If (λ, α∨i ) = 1, then Y λ = TiY
siλTi .
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Affine Hecke algebras: definition

• We have the Hecke algebra H(W a) of the affine Weyl group W a

with the above choice of Coxeter system. It is already an interesting

algebra, however it is not what is usually called the affine Hecke

algebra!

• Instead, we replace the affine braid group Ba
W by the extended affine

braid group Bae
W . The affine Hecke algebra H(W ae) is the quotient

of R[qs , q
−1
s ][Ba

W ] by q-deformed quadratic relations:

(Ts − qs)(Ts + q−1s ) = 0.

or alternatively

Ts − T−1s = qs − q−1s

• As with braid groups, we have H(W ae) ' H(W a) o Ω.

• The algebras H(W ae) are the ones that appears in the

representation theory of p-adic groups, and in the theory of double

affine Hecke algebras.
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Affine Hecke algebras: Bernstein presentation

• The R[q±1s ]-subalgebra of H(W ae) generated by T1, . . . ,Tn is

isomorphic to H(W ).

• The R[q±1s ]-submodule generated by Y P is isomorphic to the group

algebra of the weight lattice R[q±1s ][Y P ].

• Multiplication then gives rise to an isomorphism of R[q±1s ]-modules

H(W )⊗R[q±1
s ] R[q±1s ][Y P ] ' H(W ae).

• Moreover, the commutation relations between those two subalgebras

are given by, for 1 ≤ i ≤ n and λ ∈ P:

TiY
λ − Y siλTi = (qi − q−1i )

Y siλ − Y λ

Y−αi − 1
.

• This implies that the center of H(W ae) is R[q±1s ][Y P ]W .
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Affine Hecke algebras: polynomial representation

• The representation theory of affine Hecke algebras is complicated

and has been extensively studied, but we only need very special

representations.

• One natural construction is by inducing a finite-dimensional

representation E of H(W ) along the inclusion H(W ) ⊂ H(W ae). By

the previous slide, the resulting representation Ind
H(W ae

H(W ) E has

representation space R[q±1s ][Y P ]⊗R[q±1
s ] E . For E = R[q±1s ] the

“trivial” representation Ti → qi , we get the polynomial

representation of H(W ae) on R[q±1s ][Y P ].

• The commutation relations imply that in the polynomial

representation, the subalgebra R[q±1s ][Y P ] just acts by

multiplication, while Ti for 1 ≤ i ≤ n acts by

Ti 7→ qi si + (qi − q−1i )
s1 − 1

Y−αi − 1
.
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Double affine Hecke algebras



Double affine Weyl groups

• The pairing P × P∨ → Q does not necessarily take integer values,

but we can fix e ≥ 1 such that P × P∨ → 1
eZ.

• Write P̃ := P ⊕ 1
eZδ and P̃∨ := P ⊕ 1

eZδ
′ so that P̃ and P̃∨

together with the simple roots α0, . . . , αn and α∨0 , . . . , α
∨
n form

affine root systems of the type considered above.

• The extended affine Weyl groups W ae := P oW (resp.

W ae
∨ := P∨ oW ) act on P̃∨ (resp. P̃) respectively via

λ · µ := µ− (µ, λ)δ′ (resp....)

• We can now form two extended double affine Weyl groups W dae and

W dae
∨ defined as W dae := P∨ oW ae and W dae

∨ := P oW ae
∨ .

• There is a canonical isomorphism W dae 'W dae
∨ which is the

identity on P,P∨,W and sends δ to −δ′.
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Double affine braid groups

• Using the Coxeter group W a, its extension W ae and its action on

P̃∨, we can take inspiration from the Bernstein presentation of BW ae

to define a (left) double affine braid group B(W ae , P̃∨) as the group

generated by B(W ae) and X P̃∨ ' P̃∨ with the additional relations

• If (αi , λ) = 0, then XλTi = TiX
λ.

• If (αi , λ) = 1, then Xλ = TiX
siλTi .

• Similarly we have a (right) double affine braid group B(P̃∨,W ae
∨ ) as

the group generated by B(W ae
∨ ) and Y P ' P together with the

relations

• If (λ, α∨i ) = 0, then Y λTi = TiY
λ.

• If (λ, α∨i ) = 1, then Y λ = T−1
i Y siλT−1

i .
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Cherednik duality theorem

Theorem

The isomorphism W dae 'W dae
∨ lifts to an isomorphism of double affine

braid groups

B(W ae , P̃∨) ' B(P̃∨,W ae
∨ )

which is the identity on P, P∨ and the braid group B(W ) (which are

all subgroups in a natural way) and maps X δ to Y δ′ .

24



Double affine Hecke algebra

• We can now define the (left) DAHA H(W ae , P̃∨) taking the

Bernstein presentation and replacing P by P̃∨. I.e. it is the algebra

over R[q±1s ] generated by X P̃∨ , T0, . . . ,Tn and Ω satisfying the

relations of the left double affine braid group together with the

quadratic relations

(Ti − qi )(Ti + q−1i ) = 0

• Similarly, we can define the right DAHA H(P̃,W ae
∨ ) dually using the

right double affine braid group. (There is a little reindexing of the

qi ’s which I won’t go into right now).

Theorem

There is an isomorphism H(W ae , P̃∨) ' H(P̃,W ae
∨ ) which is the

identity on all generators X ,Y ,Ti ,Ω...

This common algebra is Cherednik’s DAHA, and this dual incarnation is

one of the key properties to study Macdonald polynomials, which we will

do next time. 25
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